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Abstract

Measuring the density of fluctuations in the large-scale structure of the Universe has

become a powerful tool in constraining and testing cosmological models. Current

and upcoming galaxy surveys are pushing the precision limits of current physi-

cal models, while measuring unprecedented amounts of data. This thesis presents

statistical simulations of large-scale structure and inference techniques for estimat-

ing cosmological parameters and calibrating systematic effects from galaxy sur-

vey data. First, I present a novel method to calibrate magnification bias observed

within galaxy clustering and weak gravitational lensing measurements regardless

of the selection applied to the galaxy data. This method addresses the need for

estimating this systematic within the Kilo-Degree Survey’s (KiDS) cosmological

analysis. Secondly, I show a suite of statistical forward-simulations of large-scale

structure which is designed to model galaxy survey observations, while including

relevant physical and observational biases. These simulations create realistic cat-

alogues of galaxy observations based on underlying matter density fields consis-

tent with a given cosmological model. Next, I describe how these simulations are

used to conduct the first Bayesian simulation-based inference (SBI) of cosmologi-

cal parameters from weak lensing data from KiDS at a similar precision as standard

analyses. This SBI analysis allows dropping the common assumption of a Gaus-

sian likelihood, fully propagating uncertainty from data to parameter posteriors at

a comparable computational cost as standard weak gravitational lensing analysis.

Thus, this may facilitate the efficient extraction of information from surveys such as

Euclid or the Vera Rubin Observatory. Lastly, I use an altered form of the forward-

simulations to test signal and uncertainty modelling conducted for KiDS’s analysis.

This shows the sufficiency of analytical modelling when considering systematics

such as variations in observational depth. In summary, in this thesis, I present novel
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techniques to estimate systematic uncertainties in inferring cosmological parame-

ters from galaxy surveys and I show how fast realistic forward-simulations may be

used for SBI and model testing in current and future surveys.



Impact Statement

This thesis presents novel methods and tools to improve the inference of cosmo-
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ments. With that, it makes concrete predictions and suggestions for current and
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the Hyper-Suprime Cam survey, Euclid, and the Vera Rubin Observatory. Among

these methods is the first application of simulation-based inference to a cosmic

shear analysis equivalent to a traditional analysis. At the same time, the research

presented in this thesis directly contributes to the analysis choices for the main
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With this, this work may contribute to the resolution of the greatest questions

in cosmology: understanding of nature of dark matter, dark matter and gravity.

Additionally, the investigations shown in this work have required the develop-

ment of multiple software packages which have subsequently been made publicly

available, and which are already in use by other researchers.
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giou, Maria Cristina Fortuna, Henk Hoekstra, Andrej Dvornik and Shahab Joudaki.

Lastly, I want to express gratitude to the Cosmoparticle Initiative for providing its

computational resources used in this research, and thanks to the Science and Tech-

nology Facilities Council for funding this research.



Contents

1 Introduction and Background 45

1.1 The Standard Model of Cosmology . . . . . . . . . . . . . . . . . . 45

1.1.1 General Relativity . . . . . . . . . . . . . . . . . . . . . . 47

1.1.2 Homogeneity, Isotropy and the Friedmann-Lemaı̂tre-

Robertson-Walker Metric . . . . . . . . . . . . . . . . . . . 50

1.1.3 Ingredients of the Universe . . . . . . . . . . . . . . . . . . 53

1.1.4 Expansion History and the Big Bang . . . . . . . . . . . . . 62

1.2 Growth of Large-Scale Structure . . . . . . . . . . . . . . . . . . . 62

1.2.1 Primordial Matter Fluctuations . . . . . . . . . . . . . . . . 64

1.2.2 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . 66

1.2.3 Linear Structure Growth . . . . . . . . . . . . . . . . . . . 68

1.2.4 Non-Linear Structure Growth . . . . . . . . . . . . . . . . 74

1.3 Galaxy Surveys as Probes of Large-Scale Structure . . . . . . . . . 78

1.3.1 Galaxy Clustering . . . . . . . . . . . . . . . . . . . . . . 78

1.3.2 Weak Gravitational Lensing and Cosmic Shear . . . . . . . 81

1.3.3 Galaxy-Galaxy Lensing . . . . . . . . . . . . . . . . . . . 90

1.3.4 The State-of-the-Art in Cosmology and Future Outlook . . . 93

1.4 Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 97

1.4.1 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . 97

1.4.2 Data Compression . . . . . . . . . . . . . . . . . . . . . . 98

1.4.3 Simulation-Based Inference . . . . . . . . . . . . . . . . . 100

2 Magnification Bias in Galaxy Surveys with Complex Sample Selection

Functions 108

2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . 111



Contents 10

2.1.1 Magnification Bias for Flux-Limited Surveys . . . . . . . . 111

2.1.2 Estimating the Magnification Bias in Flux-Limited Surveys . 112

2.1.3 Signal Modelling . . . . . . . . . . . . . . . . . . . . . . . 113

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2.2.1 BOSS DR12 Data . . . . . . . . . . . . . . . . . . . . . . 115

2.2.2 MICE2 Simulations . . . . . . . . . . . . . . . . . . . . . 116

2.2.3 Calibration Procedure on Simulations . . . . . . . . . . . . 120

2.2.4 Determining Magnification Bias from Observations . . . . . 123

2.3 Applications to BOSS Lenses . . . . . . . . . . . . . . . . . . . . . 124

2.4 Magnification Bias in Weak Lensing Measurements . . . . . . . . . 131

2.4.1 KiDS-1000 + BOSS Forecasts . . . . . . . . . . . . . . . . 134

2.4.2 HSC Wide + BOSS Forecasts . . . . . . . . . . . . . . . . 135

2.4.3 Euclid-like Survey + DESI-like Survey Forecasts . . . . . . 136

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3 Simulation-Based Inference of KiDS-1000 Cosmic Shear from Statisti-

cal Forward-Simulations 141

3.1 KiDS-1000 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.2 Forward Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 149

3.2.1 Cosmology Dependence: 3D Matter Power Spectrum . . . . 152

3.2.2 Working on the Sphere . . . . . . . . . . . . . . . . . . . . 154

3.2.3 Non-Limber Projection . . . . . . . . . . . . . . . . . . . . 156

3.2.4 Log-normal Matter Field Simulations . . . . . . . . . . . . 159

3.2.5 Intrinsic Alignments: Non-Linear Alignment Model . . . . 165

3.2.6 Galaxy Positions and Redshifts . . . . . . . . . . . . . . . 167

3.2.7 Galaxy Shears . . . . . . . . . . . . . . . . . . . . . . . . 170

3.2.8 Variable Depth . . . . . . . . . . . . . . . . . . . . . . . . 173

3.2.9 Shape Measurements . . . . . . . . . . . . . . . . . . . . . 179

3.2.10 Pseudo-Cls . . . . . . . . . . . . . . . . . . . . . . . . . . 180

3.3 Simulation-Based Inference (SBI) . . . . . . . . . . . . . . . . . . 187

3.3.1 Parameters and Priors . . . . . . . . . . . . . . . . . . . . 188



Contents 11

3.3.2 Score Compression . . . . . . . . . . . . . . . . . . . . . . 189

3.3.3 Density Estimation Likelihood-Free Inference . . . . . . . . 191

3.4 Validation of the SBI Pipeline . . . . . . . . . . . . . . . . . . . . 193

3.5 Cosmological Inference from Mock KiDS-1000 Data . . . . . . . . 197

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

4 Consistency Testing of KiDS-Legacy Modelling 212

4.1 KiDS-Legacy-like Data and Calibration . . . . . . . . . . . . . . . 214

4.2 Forward Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 218

4.2.1 Structure and Modelling Choices . . . . . . . . . . . . . . . 220

4.2.2 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . 229

4.3 Uncertainty Modelling . . . . . . . . . . . . . . . . . . . . . . . . 230

4.3.1 Analytical Uncertainty . . . . . . . . . . . . . . . . . . . . 230

4.3.2 Numerical Uncertainty . . . . . . . . . . . . . . . . . . . . 233

4.4 Testing the Signal Model . . . . . . . . . . . . . . . . . . . . . . . 238

4.4.1 Impact of the Spatial Footprint . . . . . . . . . . . . . . . . 238

4.4.2 Impact of Spatial Variability . . . . . . . . . . . . . . . . . 240

4.5 Testing of the Uncertainty Model . . . . . . . . . . . . . . . . . . . 240

4.5.1 Quantifying Changes in the Uncertainty . . . . . . . . . . . 240

4.5.2 Tests of the Analytic Covariance . . . . . . . . . . . . . . . 245

4.5.3 Impact of the Spatial Footprint . . . . . . . . . . . . . . . . 255

4.5.4 Impact of Spatial Variability . . . . . . . . . . . . . . . . . 262

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

5 Conclusions 277

Appendices 282

A Magnification Bias: Flux-Limited Case 282

B KiDS-SBI: Theoretical Signal Modelling 286

Bibliography 291



List of Figures

1.1 History of the density parameters, Ωi(t), of all of the ingredients of

ΛCDM discussed in Section 1.1.3 as a function of look-back time,

t, in Gyrs and the associated scale factor, a(t). The solid black line

shows the density parameter for cold dark matter, Ωc, the pink solid

line shows the density parameter for baryonic matter, Ωb, the pur-

ple dashed line shows the density parameter for dark energy, ΩΛ,

the blue dot-dashed line shows the density parameter of neutrinos,

Ων , and the orange dotted line shows the density parameter of pho-

tons/light, Ωγ . The vertical light gray dashed line indicates recom-

bination at z ≈ 1,100. Figure made by the author in accordance

with Planck Collaboration et al. (2020). . . . . . . . . . . . . . . . 63

1.2 Map of the temperature anisotropies, δT , observed in the cos-

mic microwave background by the ESA Planck space observatory

(Planck Collaboration et al., 2020). The grey areas indicate pixels

which mask the galactic foreground. Figure made by the author

with the Planck Collaboration et al. (2020) data. . . . . . . . . . . . 64



List of Figures 13

1.3 Plot of the three-dimensional matter power spectrum, Pδ (k,z), as

a function of both wavenumber, k, and redshift, z. The solid lines

show the linear matter power spectrum, while the dashed lines show

the non-linear matter power spectrum including baryonic effects at

small scales. The light blue line shows the power spectra at z = 0,

the orange lines at z = 1.0 and the red lines at z = 2.0. All power

spectra were calculated using CAMB (Code for Anisotropies in

the Microwave Background; Lewis et al. 2000) and assuming a

flat ΛCDM cosmology consistent with Planck Collaboration et al.

(2020) and a halofit model (Smith et al., 2003; Takahashi et al.,

2012; Bird et al., 2012) for the non-linear matter power spectrum

with Abary = 3.13, ηbary = 0.603 and log(TAGN) = 7.8. Figure made

by the author. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

1.4 Spatial maps showing convergence (left panel) and the associated

shear field (right panel) over a two-dimensional plane. On the left,

the lighter orange regions represent areas with large convergence,

while the dark regions represent areas with small values of conver-

gence, i.e. less matter along the line of sight. On the right, the lines

of the vector field represent the average direction and magnitude of

the observed shear which correlates to the convergence shown on

the left panel. Figure based on White & Hu (2000). . . . . . . . . . 86



List of Figures 14

1.5 Overview of the scale/wavenumber, k, and redshift, z, dependence

of the main observational probes of large-scale structure: the cos-

mic microwave background plus the gravitational lensing thereof

(in brown with a solid outline), galaxy clustering (in orange with

a dashed outline), cosmic shear (in blue with a dotted outline),

and the Lyman-α forest (in red with a dot-dashed outline). Note

that the edges of these intervals are not fixed, and they depend

on the depth and precision of a given experiment. The limits of

the CMB+Lensing observations are based on Planck Collaboration

et al. (2020), the limits for galaxy clustering are based on eBOSS

(Alam et al., 2021), the limits of cosmic shear are based on KiDS-

1000, DES-Y3 and HSC-Y3 (Asgari et al., 2021; Amon et al., 2022;

Li et al., 2023), and the limits for the Lyman-α forest measurements

are also based on eBOSS (Alam et al., 2021). Figure made by the

author. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

1.6 Posterior contours of the most recent cosmological constraints from

galaxy surveys compared to constraints from the cosmic microwave

background. The top figure only shows the cosmic shear results,

while the bottom figure shows results from 3x2pt analysis (cos-

mic shear + galaxy clustering + galaxy-galaxy lensing). The Kilo-

Degree Survey results (Asgari et al., 2021; Heymans et al., 2021)

are shown with the red dot-dashed contours, the Dark Energy Sur-

vey results (Amon et al., 2022; Abbott et al., 2022) are given by the

green dotted contours and the Hyper-Suprime Cam survey results

(Li et al., 2023; Miyatake et al., 2023) are in blue solid contours.

As a reference, the dashed orange contour shows the cosmological

constraints from the cosmic microwave background as observed by

the ESA Planck space telescope (Planck Collaboration et al., 2020).

Figures from Li et al. (2023) and Miyatake et al. (2023). . . . . . . 96



List of Figures 15

2.1 Galaxy counts per unit area on the sky, N, for 100 redshift bins

within 0 < z ≤ 1. The SDSS DR12 BOSS sample is shown in black,

the MICE2 sample with the BOSS selection function in red and the

flux-limited MICE2 sample in orange. The blue area marks the do-

main between z = 0.2 and z ≤ 0.5 which defines the zlow bin, while

the red area marks the domain of the zhigh bin (0.5 < z ≤ 0.75).

The dashed black horizontal line indicates the boundary between

the LOWZ and the CMASS samples within the BOSS DR12 sam-

ple at z ∼ 0.36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.2 Normalised differential galaxy count distribution, n(i), with respect

to the i-band magnitude. The BOSS sample is shown in black,

the MICE2 sample in red, while the flux-limited MICE2 sample

is shown in yellow. In the top plot, we see the population of galax-

ies with 0.2 < z ≤ 0.5 and at the bottom, the population of galaxies

with 0.5 < z ≤ 0.75. The black cross indicates the effective magni-

tude limit determined for the BOSS sample by finding the faintest

prominent peak in n(i). The red triangle indicates the same for the

MICE2 mock sample. . . . . . . . . . . . . . . . . . . . . . . . . . 118

2.3 Flow chart outlining the method used to estimate the magnification

bias of galaxy samples with an arbitrary sample selection. N stands

for the count of lensed galaxies, N0 refers to the counts of unlensed

galaxies, κ to the convergence, ακ to the luminosity function slope

determined from the known κ , n(m) is the differential galaxy count

distribution over magnitude, m, αobs is the luminosity function slope

as determined from n(m). . . . . . . . . . . . . . . . . . . . . . . . 121



List of Figures 16

2.4 Plot of the relative difference in galaxy counts per pixel over the

mean convergence (κ) in each pixel for a HEALPIX pixelation with

nside = 64 and in the zhigh redshift bin (0.5 < z ≤ 0.75). The

graph only shows pixels within 1 of 28 tiles. The relative differ-

ence between the lensed and unlensed galaxy counts in each pixel

are shown as blue points. The black line is fitted to the blue data

points with Equation (2.5) to give the ακ value shown in the legend. 122

2.5 αobs estimates from MICE2 simulations with the BOSS selection

function over different i-band magnitude ranges below the turn-off

magnitude, ∆i, considered to calculate the weighted average. Two

redshift ranges are considered: zlow with 0.2 < z ≤ 0.5 (top) and

zhigh with 0.5 < z ≤ 0.75 (bottom). The red cross marks the α

estimate which overlaps the most with the ακ truth from the simu-

lations (black vertical line). . . . . . . . . . . . . . . . . . . . . . . 126

2.6 The slope of the BOSS luminosity function, α , as a function of the

i-band magnitude (i) for two redshift bins: 0.2 < z ≤ 0.5 (top) and

0.5 < z ≤ 0.75 (bottom). The red line shows αobs(i) as given by

Equation (2.6) calculated from the MICE2 mocks, while the black

line shown αobs(i) as determined from the BOSS DR12 photometric

data. The grey vertical lines mark the upper and the lower bounds

of the magnitude range used to find α
BOSS
obs , while the red verti-

cal lines mark the upper and lower bounds of the highlighted mag-

nitude range used to determine α
MICE2
obs . The arrows indicate the

constant magnitude shift applied to reconcile the differential galaxy

count distribution, n(m), from observations with the n(m) from

mocks. The dotted black horizontal line marks the αobs estimate

from BOSS galaxies, the dashed red horizontal line marks the αobs

estimate from MICE2 mock galaxies and the blue dot-dashed hor-

izontal line marks the effective α
MICE2
κ determined from the weak

lensing convergence with Equation (2.5) and used to calibrate α
MICE2
obs .127



List of Figures 17

2.7 Plot of different α estimates for 16 different redshift (z) bins within

0.2 < z ≤ 0.75. The black crosses mark the α
BOSS
obs estimates from

observations within each bin, the red triangles mark α
MICE2
obs esti-

mates from mock observations and the blue circles mark the true ef-

fective α
MICE2
κ determined from the weak lensing convergence with

Equation (2.5) and used to calibrate α
MICE2
obs .The values of α

MICE2
obs

and α
BOSS
obs for the bins with z < 0.4 have been derived from the dif-

ferential galaxy count distribution with respect to the r-band mag-

nitude, n(r), while the values for the bins with z > 0.4 have been

derived from n(i). The horizontal lines show the α estimates from

simulations obtained for the zlow bin (0.2 < z ≤ 0.5) and the zhigh

bin (0.5 < z ≤ 0.75). . . . . . . . . . . . . . . . . . . . . . . . . . 130

2.8 Redshift distributions P(z) for the lens and source galaxy samples

used in the forecasts for the galaxy-galaxy lensing signal in a KiDS-

1000+BOSS, HSC Wide+BOSS and Euclid-like+DESI-like analy-

sis. The properties of these redshift distributions are given in Ta-

ble 2.2.The black vertical dot-dashed lines show the limits of the

BOSS lens bins for comparison with the source bins. . . . . . . . . 133

2.9 Magnification bias contribution CmG(ℓ) relative to the galaxy-

galaxy lensing signal CgG(ℓ) over the angular scale ℓ (in red) for

the crosscorrelations between the BOSS DR12 lens bins and the

KiDS-1000 source bins assuming α
zlow
obs = 1.93 and α

zhigh
obs = 2.62.

In blue, we show the expected relative uncertainty from shot and

shape noise in the GGL signal, σgG(ℓ)/CgG(ℓ), within each ℓ bin (6

logarithmically spaced ℓ bins per dex). The uncertainties are calcu-

lated for a KiDS footprint with an area of 1,350 deg2. The properties

of the galaxy samples are given in Table 2.2. . . . . . . . . . . . . . 136

2.10 Same as Figure 2.9, but for HSC source bins as defined in Table 2.2

and Figure 2.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of Figures 18

2.11 Same as Figure 2.9, but for Euclid-like source bins as defined in

Table 2.2 and Figure 2.8. . . . . . . . . . . . . . . . . . . . . . . . 138

3.1 Spatial map of the KiDS-1000 footprint. The top panel shows a

Mollweide projection of the full KiDS-1000 footprint, while the

two panels at the bottom show zoomed-in Cartesian projections of

KiDS-North and KiDS-South fields, respectively. . . . . . . . . . . 146

3.2 Plot of the redshift distributions of the five KiDS-1000 tomographic

bins. The shaded areas show to limits of each tomographic bin,

while the solid lines show the n(z) of the source galaxies in each

tomographic bin as a function of both redshift, z, and comoving dis-

tance, χ (the latter is derived assuming a Planck 2018 cosmology;

Planck Collaboration et al. 2020). The black dashed lines show the

limits of the spherical matter shells in our forward simulations. . . . 147

3.3 Flowchart describing the steps in a single forward simulation of

cosmic shear observables from cosmological parameters. The dark

blue rounded boxes represent the inputs and outputs which are given

to the simulation-based inference pipeline. The green slanted boxes

represent relevant quantities which are calculated during the simu-

lation. The grey rectangular boxes show steps in the calculations,

while the blue slanted boxes show any (systematic) effects which

are included. All variables are defined within the respective sec-

tions quoted in the diagram. . . . . . . . . . . . . . . . . . . . . . . 150

3.4 Three-dimensional diagram showing an octant of 19 concentric

shells as they are simulated within KIDS-SBI and GLASS. The

radius of each shell is given by its mean redshift. . . . . . . . . . . 154



List of Figures 19

3.5 Plot of the two-dimensional angular matter power spectra, C(i j)
δδ

(ℓ),

projected with LEVIN describing the correlations between the large-

scale structure within a set of 19 concentric shells spaced along the

line-of-sight as shown in Figure 3.2. The left panel shows the auto-

correlations of all shells, i.e. |i− j|= 0. The right panel shows the

correlations of each shell with its nearest neighbour, i.e. |i− j|= 1

(|i− j|> 1 are not shown as they do not have a large effect on matter

fields within each shell, see Tessore et al. 2023). The colour of each

line is given by the mean redshift of the ith bin, z(i). The under-

lying linear three-dimensional matter power spectrum is based on

flat ΛCDM assuming Ωc = 0.05, Ωb = 0.28, σ8 = 0.79, S8 = 0.84

and H0 = 67 km s−1 Mpc−1 calculated using CAMB (Lewis et al.,

2000; Lewis & Challinor, 2002; Howlett et al., 2012), while the

non-linear contribution is calculated using HMCODE-2016 (Mead

et al., 2015, 2016) assuming Abary = 3.1. The non-Limber projec-

tion done by LEVIN assumes ℓmax,nL = 1200 which causes the C(i j)
δδ

with |i− j|> 0 go to a value of zero for ℓ > ℓmax,nL. . . . . . . . . . 160

3.6 Plot of the distributions for each tomographic bin (S1 to S5) from

which the shear bias parameters from KiDS-1000 (Giblin et al.,

2021) shown in Equation (3.29) are sampled. The first panel from

the left shows the multiplicative shear bias, M(p). The second and

third panel show the real and imaginary part of the additive shear

bias, c(p)
1 and c(p)

2 , respectively. The fourth and fifth panel show the

real and imaginary part of the amplitude of the shear bias due to

variations in the point-spread function, α
(p)
1 and α

(p)
2 , respectively. . 169
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3.7 Cartesian spatial map (Nside = 1024) of the observed magnitude

of the point-spread function ellipticities, |εPSF|=
√

ε2
PSF,1 + ε2

PSF,2,

throughout the KiDS-1000 North field in the upper panel and the

KiDS-1000 South field in the lower panel. εPSF is added to the

lensed galaxy shapes in the forward simulations within KIDS-SBI

in accordance with Equation (3.29). . . . . . . . . . . . . . . . . . 174

3.8 Cartesian spatial map (Nside = 1024) of root-mean-square of the ob-

served background noise, σrms, throughout the KiDS-1000 North

field in the upper panel and the KiDS-1000 South field in the lower

panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

3.9 Spatial map (Nside = 4096) in a Cartesian projection of root-mean-

square of the observed background noise, σrms, for a 5◦×5◦ patch

of the KiDS-1000 North field at a right ascension (RA) of 180◦ and

a declination (DEC) of 0◦. . . . . . . . . . . . . . . . . . . . . . . 175
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3.10 Plots showing the dependence of the per-component Gaus-

sian shape dispersion, σε/
√

2, (top panel) and the galaxy

density, ngal, (bottom panel) on the root-mean square of the

background noise, σrms in the KiDS-1000 DR4 data. For

both panels, the data points represent the mean σε or ngal

of ten equi-populated bins in σrms with their boundaries in

{1.70, 2.33, 2.57, 2.80, 3.04, 3.28, 3.52, 3.76, 4.00, 4.23, 12.96}.

The solid line shows the linear fit to the aforementioned data points

of their respective tomographic bin according to Equations (3.30)

and (3.31). The parameters obtained from this fit are given in Ta-

ble 3.1. The dotted horizontal lines show the mean values of σε

and ngal calculated from the galaxy samples with variable depth per

tomographic bin, while the dashed horizontal lines show the values

of σε and ngal for the respective galaxy samples without any spatial

variations in the observational depth. Both of these lines agree ex-

ceptionally well by construction, so that for some source bins there

is not any observable difference between them. . . . . . . . . . . . 177

3.11 In the upper panels, plot of the normalised redshift distributions,

P(z), for each tomographic bin (S1 to S5). The redshift distribution

from the entire KiDS-1000 DR4 galaxy sample, Ptotal(z), is shown

in black, while the other ten redshift distributions are derived from

10 equi-populated subsamples of DR4 based on their observational

depth (i.e. the mean value of the root-mean-square of the back-

ground noise, σ rms) which is shown with its respective colour. The

lower panels show the associated residual change in the redshift

distributions with respect to Ptotal(z) per unit redshift. It is apparent

that variable depth mostly affects the source distributions at high

redshifts, while the effect tends to decrease the mean of the redshift

distribution with increasing σrms. . . . . . . . . . . . . . . . . . . . 179
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3.12 Signal of a single run of the KIDS-SBI simulations for all combi-

nations for five tomographic bins (S1 to S5). The blue points show

the pseudo-Cl measurements, C̃(pq)
εε,L(ΘΘΘ), for a realisation single re-

alisation of the KiDS-1000+ model. The orange triangles show the

associated BB modes in the cosmic shear signal. Throughout we

assume Ωc = 0.05, Ωb = 0.28, σ8 = 0.84, S8 = 0.76, H0 = 67 km

s−1 Mpc−1, Abary = 3.1 and AIA = 0.56. The uncertainties on the

measurements are derived from the covariance matrix described in

Section 3.3.2. The solid black line shows the pseudo-Cls, C̃εε , as

derived from theory (see Appendix B for details on this). . . . . . . 182

3.13 Bar chart comparing the run-time of a single evaluation of KIDS-

SBI (above) versus a single evaluation of a simulation based on

Joachimi et al. 2021 (below), both on a single core ( Nshells = 19,

Ntomo = 5 and Nside = 1024). Both suites of simulations use CAMB

(Lewis et al., 2000; Lewis & Challinor, 2002; Howlett et al., 2012)

to compute the three-dimensional matter power spectrum. For

the reference simulations, we use the non-Limber projection built

into CAMB with limber phi lmin = 1200 rather than LEVIN with

ℓmax,nL = 1200. We run FLASK (Xavier et al., 2016) rather than

GLASS (Tessore et al., 2023) to compute the underlying matter

and convergence fields of each of the 19 shells. Subsequently, we

sample galaxies using SALMO in both cases, and then calculate

the spatial two-point correlation functions, ξ±(θ), rather than cal-

culating the angular power spectra, C̃(ℓ). To calculate ξ±(θ) in the

reference simulations, we use TREECORR (Jarvis et al., 2004). . . . 186

3.14 Flowchart describing the structure of the simulation-based infer-

ence pipeline. The dark blue rounded boxes represent the inputs and

outputs which are given to the simulation-based inference pipeline.

The grey rectangular boxes show steps in the inference pipeline. . . 189
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3.15 Contours showing the Fisher forecasts obtained from 1,000 reali-

sations of the KiDS-1000+ (in blue) model. The input fiducial cos-

mology is set to be S8 = 0.761, ωc = 0.118, ωb = 0.022, h0 = 0.657,

ns = 1.0, AIA = 0.396, Abary = 3.113. . . . . . . . . . . . . . . . . 192

3.16 Posterior contours, in blue, of the seven cosmological and astro-

physical parameters which are varied given the KiDS-1000+ model

within KIDS-SBI over the prior space shown in Table 3.2. The

black solid lines indicate the true cosmology of the input mock data

vector generated from the KiDS-1000+ model while adding noise.

All the aforementioned values are shown in Table 3.3. These poste-

riors are obtained from training neural density estimators in DELFI

(Alsing et al., 2019) on 14,000 realisations of the forward simu-

lations assuming the KiDS-1000+ model, in line with the choices

made in L22. The posterior is obtained from the combined poste-

riors of six independent conditional Masked Autoregressive Flows

(MADs) each is made up of three to eight Masked Autoencoder for

Density Estimations (MADEs) each with two hidden layers of 50

neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

3.17 Posterior marginals, in blue, of the three cosmological parame-

ters of interest which varied given the KiDS-1000+ model within

KIDS-SBI over the prior space shown in Table 3.2. The black

solid lines indicate the true cosmology of the input mock data

vector generated from the KiDS-1000+ model while adding noise.

All the aforementioned values are shown in Table 3.3. Note that

the matter density parameter, Ωm, is a derived parameter given by

Ωm ≡ (ωc +ωb)/h2
0, and the posterior shown here is derived from

the posteriors shown in Figure 3.16. . . . . . . . . . . . . . . . . . 195
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3.18 Plot of the expected coverage probability versus the credibility level

as defined in the Tests of Accuracy with Random Points (TARP)

described in Lemos et al. (2023a) for the posterior shown in Fig-

ure 3.16 assuming the KiDS-1000+ model. The dashed line is a ref-

erence line for a perfectly linear relation. The credibility level gives

the fraction of the total probability density of the learned posterior

being considered, while the expected coverage probability measures

the fraction of posterior samples which have a posterior probability

smaller than the best estimate at a given credibility level. We note

the relation in this case is highly linear which is a necessary and

sufficient measure that the posterior estimate given in Figure 3.16 is

accurate. Figure from Lin et al. (in prep.). . . . . . . . . . . . . . . 197

3.19 Posterior contours of the main constrained cosmological parame-

ters from the KIDS-SBI analysis of a mock cosmic shear data vec-

tor assuming the KiDS-1000+ model (in orange) compared against

posterior contours from other analysis. The purple contour shows

the posterior from an analysis of the cosmic shear signal measured

with pseudo-Cls from KiDS-1000 data assuming a Gaussian like-

lihood (Loureiro et al. 2021; where the uncertainty model includes

variable depth as is the case in the KiDS-1000+ model), while the

blue contour shows the posterior from the cosmic microwave back-

ground constraints from the TT+TE+EE modes (Planck Collabora-

tion et al., 2020). The solid black lines show the true cosmology

assumed in the mock data vectors used for the SBI contours (see

Table 3.3). The true cosmology is based on the MAP from Asgari

et al. (2021) which is close to the MAP from Loureiro et al. (2021),

but noticeably different from the preferred cosmology from Planck

Collaboration et al. (2020). Note that the Planck TT+TE+EE con-

tours do not have any marginals in AIA as the CMB is not sensitive

to the IAs of galaxies. . . . . . . . . . . . . . . . . . . . . . . . . . 199
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3.20 Plots showing the effect of mode mixing due to the KiDS-1000 sur-

vey footprint on the cosmic shear signal in the 5-5 tomographic

bin combination. The left panel shows the expected angular power

spectra from theory in blue, C(55)
EE (ℓ), truncated such that modes

with ℓ ≥ 50 are set to zero, while also showing the corresponding

pseudo-Cl, C̃(55)
low (ℓ), in orange which is derived from the mixing

matrix shown in Figure B.1. The black dashed line marks lower

limit in the domain of the pseudo-Cls considered in this analysis,

i.e. ℓ= 76. The right panel shows the ratio between the aforemen-

tioned pseudo-Cl derived from truncated theoretical angular power

spectra over the measured pseudo-Cl for ℓ ∈ [76,1500] from a sin-

gle evaluation of the KiDS-1000+ model with KIDS-SBI assuming

the same cosmology. . . . . . . . . . . . . . . . . . . . . . . . . . 201

3.21 Likelihood marginals in the compressed data space for 5 different

assumed sets of cosmological parameters given the KiDS-1000+

model within KIDS-SBI over the prior space shown in Table 3.2.

The compressed data values are labelled according to the cosmo-

logical parameter with which they are most correlated (see Sec-

tions 1.4.2 and 3.3.2 for details). For the orange contours, the input

data vector is set to S8 = 0.694, S8 = 0.724 for the pink contours,

S8 = 0.754 for the purple contours, S8 = 0.784 for the purple con-

tours, and S8 = 0.814 for the blue contours. All other cosmologi-

cal parameters are taken to be the same as in Table 3.3. Table 3.4

shows the S8 values and the associated standard deviations in the

likelihood marginals. . . . . . . . . . . . . . . . . . . . . . . . . . 202
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3.22 Plot of the standard deviation of the analytical likelihood distribu-

tion of χa (which is given by the goodness of fit of the cosmic shear

2PCF signal scaled by a factor of a) as a function of the factor a.

Each of the panels shows the effect on the shear signal of a dif-

ferent combination of the five KiDS-1000 tomographic bins (S1 to

S5). The blue dots represent the σχa values at ℓ = 70 which is just

below the scale cuts applied in the KiDS-1000+ model. The or-

ange crosses are evaluated at ℓ = 100, while the green plus signs

assume ℓ = 500, where the uncertainty is dominated by the shape

noise. The panel in the upper right corner shows how the 1σ inter-

vals of the likelihood marginals from KIDS-SBI vary with respect

to the change in S8 relative to Sfid
8 = 0.754 as shown in Figure 3.21

and Table 3.4. The grey dashed line in each panel shows a direct

proportionality for reference. . . . . . . . . . . . . . . . . . . . . . 206

3.23 Posterior contours of the seven cosmological and astrophysical pa-

rameters which are varied given the KiDS-1000+ model within

KIDS-SBI over the prior space shown in Table 3.2. Both contours

are obtained from training neural density estimators in DELFI (Als-

ing et al., 2019) on 14,000 realisations of the forward simulations

assuming the KiDS-1000+ model, in line with the choices made in

L22. The blue posterior is calculated from a single Mixture Den-

sity Network which is made up of a single multivariate Gaussian.

The orange countour is the combined posteriors of six independent

conditional Masked Autoregressive Flows (MADs) each is made

up of three to eight Masked Autoencoder for Density Estimations

(MADEs) each with two hidden layers of 50 neurons. The black

solid lines indicate the true cosmology of the input mock data vec-

tor generated from the KiDS-1000+ model while adding noise. All

the aforementioned values are shown in Table 3.3. . . . . . . . . . . 207
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4.1 Plot of the redshift distributions of the six KiDS-Legacy-like to-

mographic bins (S1 to S6). The shaded areas show to limits of

each tomographic bin, while the solid lines show the n(z) of the

source galaxies in each tomographic bin as a function of both red-

shift, z, and comoving distance, χ (the latter is derived assuming

a Planck 2018 cosmology; Planck Collaboration et al. 2020). The

black dashed lines show the limits of the spherical matter shells in

our forward simulations. . . . . . . . . . . . . . . . . . . . . . . . 216

4.2 Spatial map of the expected KiDS DR5, i.e. KiDS-Legacy, and the

KiDS DR4/KiDS-1000 footprints. The green areas show the point-

ings which are included in KiDS DR4, while both the green and

the yellow pointings are included in KiDS DR5. The purple point-

ings show the pointings which were excluded, i.e. “de-scoped”,

from the final KiDS data release. The top and bottom panels show

Cartesian projections of KiDS-North and KiDS-South fields, re-

spectively. Figure courtesy of Angus H. Wright and the KiDS team. 217

4.3 Flowchart describing the steps in a single forward simulation of

cosmic shear observables from cosmological parameters used for

the KiDS-Legacy signal and uncertainty modelling. The dark blue

rounded boxes represent the inputs and outputs which are given to

the simulation-based inference pipeline. The green slanted boxes

represent relevant quantities which are calculated during the simu-

lation. The grey rectangular boxes show steps in the calculations,

while the blue slanted boxes show any (systematic) effects which

are included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
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4.4 Plots showing the underlying correlations of systematic effect

parameters with the magnitude measurements in the r-band,

MAG GAAP r, the photometric redshifts, Z B, and each other.

These variables are the magnitude limit in the r-band, MAG LIM r,

and the root-mean square of the background noise in the observa-

tions, “Level” or σrms. The black dots show the values of galaxies

in KiDS DR4 (Kuijken et al., 2019). The solid red lines show the

running average, while the dashed lines show the 1σ upper and

lower bounds of the running average. Figures courtesy of Angus H.

Wright and the KiDS team. . . . . . . . . . . . . . . . . . . . . . . 225

4.5 Plots showing the dependence of the per-component Gaussian

shape dispersion, σε/
√

2, (top panel) and the galaxy density, ngal,

(bottom panel) on the root-mean square of the background noise,

σrms in the KiDS-Legacy-like mock catalogue. For both panels,

the data points represent the mean σε or ngal of ten equi-populated

bins in σrms. The solid line shows the linear fit to the aforemen-

tioned data points of their respective tomographic bin according to

Equations (3.30) and (3.31). The parameters of this fit for each to-

mographic bin are shown in Table 4.2. The dotted horizontal lines

show the mean values of σε and ngal calculated from the galaxy

samples with variable depth per tomographic bin, while the dashed

horizontal lines show the values of σε and ngal for the respective

galaxy samples without any spatial variations in the observational

depth. Both of these lines agree exceptionally well by construction,

but some negligible deviations may occur due to rounding errors. . . 227
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4.6 In the upper panels, plot of the normalised redshift distributions,

P(z), for each tomographic bin (S1 to S6). The redshift distribution

from the entire KiDS-Legacy-like mock catalogue constructed from

the organised randoms (Johnston et al., 2021), Ptotal(z), is shown in

black, while the other ten redshift distributions are derived from 10

equi-populated subsamples of the mock catalogue based on their

observational depth (i.e. the mean value of the root-mean-square

of the background noise, σ rms) which is shown with its respective

colour. The lower panels show the associated residual change in the

redshift distributions with respect to Ptotal(z) per unit redshift. It is

apparent that variable depth mostly affects the source distributions

at high redshifts, while the effect tends to decrease the mean of the

redshift distribution with increasing σrms. . . . . . . . . . . . . . . 228

4.7 Measurements of the mean two-point correlation functions, ξ±, as

a function of angular separation, θ , between 5,000 realisations of

KiDS-Legacy-like mock catalogues with the same underlying cos-

mology. Each line represents different choices for modelling survey

characteristics such as the footprint and variable depth. The black

dot-dahsed lines show the measurement for Buceros, the red dashed

lines the measurement for Cygnus and the blue solid lines show

Egretta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

4.8 Bitmap of the KiDS-Legacy-like analytic covariance matrix. The

upper left panels show the ξ+-ξ+ covariance for all tomographic

bin combinations, with each pixel showing the value for a single

log-spaced bin in angular separation, θ , between θ = 0.1 arcmin

and θ = 300 arcmin. The upper right and lower left panels show

the same, but for the covariance between ξ+ and ξ−, while the lower

right panels show the covariance of ξ− with itself. . . . . . . . . . . 234
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4.9 Bitmap of the covariance matrix terms as computed from 5,000 nu-

merical realisations of KiDS-Legacy-like Buceros (idealised foot-

print and homogeneous galaxy selection). The upper left panels

show the ξ+-ξ+ covariance for all tomographic bin combinations,

with each pixel showing the value for a single log-spaced bin in an-

gular separation, θ , between θ = 0.1 arcmin and θ = 300 arcmin.

The upper right and lower left panels show the same, but for the

covariance between ξ+ and ξ−, while the lower right panels show

the covariance of ξ− with itself. . . . . . . . . . . . . . . . . . . . 235

4.10 Bitmap of the diagonal covariance matrix terms as computed from

5,000 numerical realisations of KiDS-Legacy-like Cygnus (realistic

footprint and homogeneous galaxy selection). The upper left panels

show the covariance between ξ+ measurements from tomographic

bins S1 to S6, with each pixel showing the value for a single log-

spaced bin in angular separation, θ , between θ = 0.1 arcmin and

θ = 300 arcmin. The upper right and lower left panels show the

same, but for the covariance between ξ+ and ξ−, while the lower

right panels show the covariance of ξ− with itself. . . . . . . . . . . 236

4.11 Bitmap of the diagonal covariance matrix terms as computed from

5,000 numerical realisations of KiDS-Legacy-like Egretta (realistic

footprint, and inhomogenous and anisotropic galaxy selection). The

upper left panels show the covariance between ξ+ measurements

from tomographic bins S1 to S6, with each pixel showing the value

for a single log-spaced bin in angular separation, θ , between θ =

0.1 arcmin and θ = 300 arcmin. The upper right and lower left

panels show the same, but for the covariance between ξ+ and ξ−,

while the lower right panels show the covariance of ξ− with itself. . 237
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4.12 Difference between the mean shear two-point correlation functions,

ξ±(θ), as measured from 5,000 realisations of Cygnus and from

5,000 realisations of Buceros with the same underlying cosmology

and seeds. The uncertainties shown are the propagated uncertainties

of the difference of the means. Each panel shows the difference in

signal for a given tomographic bin pair of the bins from S1 to S6. . . 239

4.13 In blue, the difference between the mean shear two-point correlation

functions, ξ±(θ), as measured from 5,000 realisations of Egretta

and from 5,000 realisations of Cygnus with the same underlying

cosmology and seeds. The uncertainties shown are the propagated

uncertainties of the difference of the means. The orange lines show

the expected difference in the measured signal due to the inclusion

of equivalent depth variability as given by the semi-analytical esti-

mates form the model presented in Heydenreich et al. (2020). Each

panel shows the difference in signal for a given tomographic bin

pair of the bins from S1 to S6. . . . . . . . . . . . . . . . . . . . . 241

4.14 Plots of the relative Förstner-Moonen distance, ∆dFM, between two

sets of covariance matrices from Buceros and Cygnus as a function

of the fractional change in the reference matrix, k. The top panel

shows ∆dFM between the Cygnus and Buceros covariance matri-

ces when considering only the first five KiDS-1000 tomographic

bins, while the bottom panel shows the same when considering all

six KiDS-Legacy-like tomographic bins. The dashed vertical lines

show the values of kmin for a given covariance matrix pair. The

data points show the values of ∆dFM(k) near kmin at intervals in k

of 0.005. The solid lines show the Lorentzian fit given by Equa-

tion (4.19) of the data points, while the associated shaded region of

the same colour shows the FWHM of the Lorentzian around kmin. . 246
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4.15 Relative difference between the standard deviations calculated from

the diagonal elements of the analytic covariance of cosmic shear

two-point correlation functions, Cov[ξ±(θ),ξ±(θ)], and the covari-

ance as calculated from 5,000 realisations different mocks (Buceros

in dashed lines, Cygnus in solid lines, and Egretta in dotted lines),

as a function of angular separation, θ , in arcmin. The orange lines

show the relative differences between Cov[ξ+(θ),ξ+(θ)], while the

blue lines show the same for Cov[ξ−(θ),ξ−(θ)]. Each panel shows

the difference in signal for a given tomographic bin pair of the bins

from S1 to S6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

4.16 Bitmap of the difference in the correlation coefficients, ∆ρ , between

the analytic covariance matrix (see Figure 4.8), and the covariance

matrix from Cygnus (realistic footprint, and homogeneous galaxy

selection; shown in Figure 4.10). The upper left panels show ∆ρ for

ξ+- ξ+, with each pixel showing the value for a single log-spaced

bin in angular separation, θ , between θ = 0.1 arcmin and θ = 300

arcmin. The upper right and lower left panels show the same, but

for the change in correlation between ξ+ and ξ−, while the lower

right panels show the change in correlation of ξ− with itself. . . . . 248
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4.17 Bitmap showing the kmin measure from comparing the analytical

covariance matrix, Cov(ξ±,ξ±), and the Cov(ξ±,ξ±) as calculated

from Cygnus as four separate blocks. The uncertainties given for

each kmin are a measure of the potential degeneracy of kmin as given

by Γ/2 as shown in Equation (4.19), where Γ → 0 implies that kmin

is unique and Γ→∞ implies that kmin is not a unique minimum. The

left 4×4 bitmap shows kmin when only considering the covariance

terms which correlate the uncertainties from tomographic bins S1

to S5 (as in KiDS-1000). The right 4× 4 bitmap shows kmin when

considering all covariance terms from tomographic bins S1 to S6

(as in KiDS-Legacy). Lighter panels imply that the given block of

the analytical covariance matrix is overall less noisy than CovCygnus,

darker green panels imply the reverse. . . . . . . . . . . . . . . . . 249

4.18 Bitmap of the difference in the correlation coefficients, ∆ρ , between

the analytic covariance matrix (see Figure 4.8), and the covariance

matrix from Buceros (idealised footprint , and homogeneous galaxy

selection; shown in Figure 4.9). The upper left panels show ∆ρ for

ξ+- ξ+, with each pixel showing the value for a single log-spaced

bin in angular separation, θ , between θ = 0.1 arcmin and θ = 300

arcmin. The upper right and lower left panels show the same, but

for the change in correlation between ξ+ and ξ−, while the lower

right panels show the change in correlation of ξ− with itself. . . . . 252
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4.19 Bitmap showing the kmin measure from comparing the analytical

covariance matrix, Cov(ξ±,ξ±), and the Cov(ξ±,ξ±) as calculated

from Buceros as four separate blocks. The uncertainties given for

each kmin are a measure of the potential degeneracy of kmin as given

by Γ/2 as shown in Equation (4.19), where Γ → 0 implies that kmin

is unique and Γ→∞ implies that kmin is not a unique minimum. The

left 4×4 bitmap shows kmin when only considering the covariance

terms which correlate the uncertainties from tomographic bins S1

to S5 (as in KiDS-1000). The right 4× 4 bitmap shows kmin when

considering all covariance terms from tomographic bins S1 to S6 (as

in KiDS-Legacy). Lighter panels imply that the given block of the

analytical covariance matrix is overall less noisy than CovBuceros,

darker green panels imply the reverse. . . . . . . . . . . . . . . . . 253

4.20 Bitmap of the difference in the correlation coefficients, ∆ρ , between

the analytic covariance matrix (see Figure 4.8), and the covariance

matrix from Egretta (realistic footprint, and inhomogeneous and

anistropic galaxy selection; shown in Figure 4.11). The upper left

panels show ∆ρ for ξ+- ξ+, with each pixel showing the value for

a single log-spaced bin in angular separation, θ , between θ = 0.1

arcmin and θ = 300 arcmin. The upper right and lower left panels

show the same, but for the change in correlation between ξ+ and

ξ−, while the lower right panels show the change in correlation of

ξ− with itself. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
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4.21 Relative difference between the standard deviations calculated from

the diagonal elements of the covariance of two-point correlation

functions, Cov[ξ±(θ),ξ±(θ)], as measured from 5,000 realisations

of Cygnus and from 5,000 realisations of Buceros, as a function of

angular separation, θ , in arcmin. The orange lines show the relative
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Chapter 1

Introduction and Background

1.1 The Standard Model of Cosmology
Cosmology concerns itself with the study of the physical laws which describe the

formation, evolution and composition of the Universe at the largest scales. Over the

last few decades, a consensus has emerged within the field of cosmology based on

a single model being able describe most, if not all, astronomical observations that

have been made so far. The model in question is known as the “Standard Model of

Cosmology” or the Lambda Cold Dark Matter (ΛCDM) model (Peebles, 1982; Blu-

menthal et al., 1984). With the advent of precision cosmology and the proliferation

of experiments probing different scales and time domains, the ΛCDM model has

been remarkably successful in explaining the observations. ΛCDM is in agreement

with observations at large scales in the early Universe from the cosmic microwave

background (Mather et al., 1990; Bennett et al., 2013; Planck Collaboration et al.,

2020), while also being in agreement with late-Universe probes at different scales:

supernovae (Riess et al., 1998; Perlmutter et al., 1999), Baryonic Acoustic Oscilla-

tions (BAOs; Cole et al. 2005; Eisenstein et al. 2005; Blake et al. 2011; Beutler et al.

2011; Anderson et al. 2012), cosmic shear (Kaiser et al., 2000; Wittman et al., 2000;

Van Waerbeke et al., 2000; Bacon et al., 2000; Heymans et al., 2013; Hildebrandt

et al., 2017; Asgari et al., 2021; Amon et al., 2022, 2023), and many more. Having

said this, it is worth noting that some potential inconsistencies within ΛCDM have

been found in recent years (H0 tension, S8 discrepancy, etc.), but these could still be

consistent with systematic effects.
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The standard model of cosmology is built upon the general theory of relativity

(GR; Einstein 1915; Hilbert 1915). As is shown in detail in Section 1.1.1, GR es-

tablishes the geometry of the Universe, the dynamics of this geometry and the inter-

action between the geometry of the Universe and its contents. Additionally, ΛCDM

makes a series of assumptions within the framework of GR often referred to as the

“cosmological principle”. This principle states that at sufficiently large scales the

Universe is spatially homogeneous and isotropic (Robertson, 1936; Walker, 1937).

In other words, the cosmological principle is an assumption which implies that ob-

servations of the Universe at large scales are independent of the position of the

frame-of-reference within the Universe. As a consequence, one can derive the

Friedmann-Lemaı̂tre-Robertson-Walker metric (Friedmann, 1924; Lemaı̂tre, 1927)

which ingrains homogeneity and isotropy within field equations of GR (see Sec-

tion 1.1.2 for a detailed discussion).

With GR and the cosmological principle, the dynamics of ΛCDM are deter-

mined. To model the contents of the Universe which are subject to these dynam-

ics, in Section 1.1.3, I present the “ingredients” of ΛCDM. These can be classed

into broadly four types: baryonic matter, cold-dark matter, dark energy, and radi-

ation. Baryonic matter includes all non-relativistic matter which can interact with

itself and radiation through the forces described by the Standard Model of Particles

Physics (see Mann 2010 for a review). Cold dark matter is a term used for non-

relativistic matter which does not couple to any of the forces in the Standard Model

of Particle Physics nor does it interact with itself. Cold dark matter is assumed to

only have a causal effect on other components of the Universe through gravitational

interactions. The third type of ingredient of ΛCDM is known as dark energy. Al-

though other hypotheses exist, dark energy is generally understood as a “cosmolog-

ical constant” often represented with a Λ. This implies that it is a scale-independent

vacuum energy which homogeneously permeates all of space-time which can be

interpreted as negative pressure in the field equations of GR. Lastly, there is the

radiation or “hot matter” component of ΛCDM which is mostly made up of to two

distinct types of particles: electromagnetic radiation and relativistic matter particles,
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such as neutrinos at early times.

All these types of matter and energy which make up the Universe have distinct

properties that influence the growth of large-scale structure in the Universe as is

discussed in Section 1.2.

1.1.1 General Relativity

As an extension from special relativity (Einstein, 1905) to accelerating frames of

reference, Einstein’s theory of general relativity (Einstein, 1915; Hilbert, 1915) has

been accepted as the prevailing theory of gravity. It is capable of accurately describ-

ing the orbits of planets (Clemence, 1947; Biswas & Mani, 2008), the gravitational

lensing of light (Dyson et al., 1920), the propagation of gravitational waves (Abbott

et al., 2016), the existence of black holes (from a direct image: Event Horizon Tele-

scope Collaboration et al. 2019; from black hole mergers: Abbott et al. 2016; from

the motion of stars: Eckart & Genzel 1996; from active galactic nuclei: e.g. Harms

et al. 1994; from invisible companions: e.g. Rivinius et al. 2020; from X-ray bursts:

e.g. Kaaret et al. 2017), etc., while also reproducing all predictions from special

relativity and Newtonian mechanics.

The general theory of relativity is based on some key axioms. First, there is the

Principle of the Equivalence of Gravitation and Inertia, also known as the Equiv-

alence Principle. According to Weinberg (2008), the Equivalence Principle states

that “at any space-time point in an arbitrary gravitational field there is a locally iner-

tial coordinate system in which the effects of gravitation are absent in a sufficiently

small space-time neighborhood of that point” (p. 511). Here, “locally inertial”

refers to the fact that for infinitesimal intervals of space-time, a Minkowski metric

applies, i.e. the laws of motion as given by special relativity apply (Einstein, 1905).

This property is directly akin to an n-dimensional manifold being homeomorphic to

an Rn-space. Therefore, according to the Equivalence Principle, space-time must

be described by a manifold (see Weinberg 1972 for a review of the properties of

such objects). Secondly, we must assume a form for the gravitational potential to

fix the constants within GR. Following the approach in Weinberg (1972), this can

be done by assuming the Poisson equation
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∇
2
Φ = 4πGρ, (1.1)

where ∇ is the Laplacian, Φ is the gravitational potential, G is Newton’s gravita-

tional constant and ρ is the mass density in the non-relativistic limit. Consider-

ing a weak static field, the time-component of the underlying metric of the four-

dimensional space-time manifold, gµν , is given by

g00 = 1+2Φ, (1.2)

where here and hence forth c= 1 and the metric is assumed to follow the convention

which scales the time-like coordinate by a factor of +1, while scaling the three

space-like coordinates by a factor of −1 (+, -, -, -). Taking into consideration that in

the non-relativistic limit the time-time-component of the stress-energy-tensor, Tµν ,

is T00 ≈ ρ , the Poisson equation becomes

∇
2g00 = 8πGT00. (1.3)

Taking this equation as an ansatz for the general relation of Tµν , renaming the

left-hand-side as a tensor and invoking the Equivalence Principle to extrapolate this

relation beyond the weak field limit, one finds that

Gµν = 8πGTµν , (1.4)

where Gµν is the Einstein tensor and Tµν is the stress-energy tensor which for a pre-

fect fluid in equilibrium is given as Tµν = diag[ρ, P, P, P] where P is the pressure of

the fluid. In general, one can construct a field consistent with Gµν from a Riemann

curvature tensor, Rν

µαβ
for some covector in space-time, Wµ , which is given by

Rν

µαβ
Wν ≡ [∇α ,∇β ]Wµ , (1.5)

where ∇α is the covariant derivative and [∇α ,∇β ] indicates the commutator of the

covariant derivative with itself. Here is where the third axiom of GR is involved:
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the “vanishing torsion assumption”, i.e. that parallel-transported vectors are not

rotated/do not experience torsion. Mathematically, this implies that [∇α ,∇β ] =

∇α∇β −∇β ∇α . Consequently, the Christoffel symbol, Γα
µν , appearing within the

covariant derivative, which is given by ∇µWν = ∂αWν −Γα
µνWα with ∂α ≡ ∂/∂xα

for a given four-vector xα , must be a symmetric tensor of rank 3 given by

Γ
α
µν =

1
2

gαβ (∂νgβ µ +∂µgβν −∂β gµν). (1.6)

Therefore, the Riemann curvature tensor, Rν

µαβ
, is anti-symmetric, and one can

contract it as Rα
µαν ≡ Rµν to define the Ricci tensor, and in turn contract Rµ

µ ≡ R

to define the Ricci scalar. Ensuring that Gµν is consistent with the anti-symmetric

nature of Rν

µαβ
, taking into consideration that Gµν = Tµν = 0 and G00 = ∇2g00 in

the weak static field limit, one can obtain the Einstein field equations as follows

Gµν = Rµν −
1
2

gµνR = 8πGTµν . (1.7)

However, Equation (1.7) still misses one axiom commonly included when writ-

ing the Einstein field equations for the whole Universe: the existence of a vac-

uum energy which counteracts the effect of gravity, i.e. dark energy. This can be

achieved by including a term with a “cosmological constant”, Λ, as follows

Gµν +gµνΛ = Rµν −
1
2

gµνR+gµνΛ = 8πGTµν . (1.8)

Although this cosmological constant is nowadays used to model the vacuum energy

which drives the accelerated expansion of a non-static Universe (Lemaı̂tre, 1927;

Riess et al., 1998; Perlmutter et al., 1999), it was originally proposed by Einstein

to balance the Einstein field equations such that the Universe could be static (Ein-

stein, 1917). In Einstein’s original work, the cosmological constant is included as

an additional term added to the Einstein tensor, as shown in this work. However,

Equation (1.8) allows some freedom of interpretation regarding the nature of the

cosmological constant. The gµνΛ term can be freely added either to the left-hand

side or to the right-hand side of the Einstein field equations, as both cases satisfy
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the Bianchi identities (Voss, 1880; Bianchi, 1902). With this, the cosmological con-

stant, when kept on the left-hand side of the Einstein field equations, can be treated

as a constant scalar curvature inherent to space-time which contributes to the Ein-

stein tensor. Equivalently, when the cosmological constant is on the right-hand side

of the equation, it can be interpreted as a perfect fluid which contributes a constant

energy and pressure to the stress-energy tensor. Although the latter interpretation is

the most commonly used, within the context of general relativity, both are mathe-

matically equivalent.

Equation (1.8) fully captures the dynamics of the Universe and its contents

within a four-dimensional torsion-free space-time with a constant vacuum energy.

At the same time, it gives the freedom to select any metric which may define the

curvature of space-time, while also giving the freedom of including different types

of energy and matter in the stress-energy tensor.

1.1.2 Homogeneity, Isotropy and the Friedmann-Lemaı̂tre-

Robertson-Walker Metric

Building upon the cosmological Einstein field equations, one can invoke the “cos-

mological principle”: at the largest scales, the Universe is spatially homogeneous

and isotropic (Robertson, 1936; Walker, 1937). As a consequence, the metric of

space-time must not have a preferred spatial direction which could allow the defi-

nition of a frame of reference that violates isotropy. Allowing the space-like coor-

dinates of the metric to vary as a function of the time-like coordinate (i.e. allowing

the Universe to evolve), we may define the following metric (Friedmann, 1924;

Lemaı̂tre, 1927; Robertson, 1936; Walker, 1937),

ds2 = gµν(x)dxµdxν = dt2 −a2(t)dΣΣΣ
2, (1.9)

where ds is an infinitesimal interval, xµ is a four-vector existing on the manifold

defined by gµν(x), t is time, a(t) is the scale factor at time, t, and ΣΣΣ is a three-vector

which defines a three-dimensional space with a uniform curvature. The latter can be

defined in any Lorentz invariant coordinate system. For the purposes of this thesis,
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two coordinate systems are of interest: hyperspherical coordinates (χ , θ , φ ) and

reduced-circumference polar coordinates (X , θ , φ ). The former are given by

dΣΣΣ
2 = dχ

2 + f 2
k (χ)

[
dθ

2 + sin2(θ)dφ
2], (1.10)

where χ is the comoving distance, θ and φ are orthogonal angular coordinates,

and fk(χ) is the transverse comoving distance defined as a function of comoving

distance as follows

fk(χ) =


k−

1
2 sin

(
χk

1
2
)
, if k > 0,

χ, if k = 0,

|k|− 1
2 sinh

(
χ|k| 1

2
)
, if k < 0,

(1.11)

where k is the Gaussian curvature of space-time at a(t) = 1 (in most cases, the

Universe is assumed to be flat, so k = 0). The radial coordinate, the comoving

distance, χ , is defined such that it is constant between two frames of reference which

are coupled to the expansion of the Universe. The transverse comoving distance,

fk(χ), is similar to the comoving distance in that it also accounts for the expansion

of the Universe. In addition, it also accounts for any deviations in the path length

caused by the curvature of the underlying space-time manifold, as parametrised by

k.

Alternatively, it is also useful to express the FLRW metric given in Equa-

tion (1.9) in reduced-circumference polar coordinates as follows

dΣΣΣ
2 =

dX 2

1− kX 2 +X 2[dθ
2 + sin2(θ)dφ

2], (1.12)

where the radial coordinate, X , is equivalent to the angular comoving distance,

X ≡ fk(χ). Note that Equations (1.10) and (1.12) are equivalent in their represen-

tation of the FLRW metric. The distinguishing quality between the two metrics is

the choice of radial coordinate: the comoving distance, χ , for hyperspherical co-

ordinates, and the angular comoving distance, X , for reduced-circumference polar

coordinates.
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Regardless of how we define the set of coordinates, when substituting the

FLRW metric in Equation (1.9) into the cosmological Einstein field equations in

Equation (1.8), we obtain the following set of independent equations known as the

Friedmann equations (Friedmann, 1924),

[
ȧ(t)
a(t)

]2

+
k
a2 −

Λ

3
=

8πG
3

ρ, (1.13)

ä(t)
a(t)

− Λ

3
=−4πG

3
(
ρ +3P

)
, (1.14)

where ȧ ≡ da/dt. As a(t) gives the relative scaling of distances at a given time, ȧ/a

from Equation (1.13) is proportional of the speed at which the Universe expands,

while ä/a from Equation (1.14) is proportional to the acceleration of the expan-

sion speed of the Universe. Since these quantities are often used in cosmological

calculations, it is useful to fold them into the Hubble parameter, H(t), as follows

(Lemaı̂tre, 1927),

H(t)≡ ȧ(t)
a(t)

= H0 E(t), (1.15)

where H0 is the Hubble constant, i.e. the Hubble parameter today, and E(t) is the

dimensionless Hubble parameter as a function of time. H0 is one of the main in-

dependent parameters used when constraining ΛCDM from observations as many

cosmological probes are sensitive to the expansion history of the Universe. Due

to its omnipresence, in the literature, it is often expressed using the so-called little

h, which is defined such that H0 = 100hkms−1Mpc−1. It is also of historical sig-

nificance, as the first time it was measured (Hubble, 1929) by observing a linear

relation between the luminosity distance, DL, of nearby galaxies and their associ-

ated recession speed, v, such that H0 = v/DL > 0; it disproved the notion of a static

Universe.

This measurement by Hubble (1929) made use of an important effect to mea-

sure the luminosity distances, DL, which is at the core of all cosmological mea-

surements in modern cosmology: cosmological redshift. Redshift is a phenomenon
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which occurs when the wavelength of light is stretched (i.e. shifted towards the red

end of the electromagnetic spectrum), and it is defined as follows

z =
λ (tobs)−λ (t)

λ (t)
, (1.16)

where λ (tobs) is the wavelength of light as seen by an observer, while λ (t) is the

wavelength of the light at the time of its emission by the source, t. Redshift can

occur for multiple reasons: the light source might have a peculiar velocity with

respect to the observer causing a redshift due to the Doppler effect, or the light

source might be in a gravitational potential, so there is a gravitational redshift due

to the light travelling through a curved space-time. Besides such cases, the type

of redshift of particular interest to the work presented in this thesis is the redshift

caused by the cosmological expansion of the Universe. According to the FLRW

metric, the wavelengths given in Equation (1.16) scale linearly with the scale factor,

a(t), such that

z =
a(tobs)

a(t)
−1, (1.17)

where a(tobs) is taken to be equal to one when the observation is made at the

present day. Consequently, any instance of the scale factor, a(t), can by re-

placed by 1/(1+ z), so, for example, the luminosity distance can be expressed as

DL ≡ a(t) fk[χ(t)] = fk[χ(z)]/(1+ z). In other words, measuring cosmological red-

shift allows one to directly probe the scale factor at a given time, so the expansion

history of the Universe can be deciphered.

1.1.3 Ingredients of the Universe

As shown in Sections 1.1.1 and 1.1.2, the ideas of GR and the FLRW metric allow

one to fully describe the expansion history of space-time. As is apparent from the

dependence of the Friedmann equations (1.13) and (1.14) on the density, ρ , and

pressure, P, of the fluids within the Universe, the dynamics of a given component

ingredient of the Universe will depend on its equation of state given by
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w ≡ P
ρ
, (1.18)

where w is a dimensionless ratio. To define the dynamics, we consider only the T 0ν

momentum terms of the stress-energy tensor, T µν = diag[ρ(t), P(t), P(t), P(t)],

and invoke conservation of momentum, ∇νT 0ν = 0, which gives that

ρ̇(t)+
3ȧ(t)
a(t)

(
ρ(t)+P(t)

)
= 0, (1.19)

which is known as the continuity equation. When solving this differential equation,

one finds that the density of the fluid, ρ , in general evolves according to

ρ(t) = ρ0 a(t)−3(1+w), (1.20)

where ρ0 is the initial density. It is often convenient to express these densities as

multiples of the critical density, ρcrit, which can be thought of as the total energy

density contributed by the contents of a flat Universe (i.e. k = 0) as follows

ρcrit(t)≡ ∑
i

ρi(t), (1.21)

where ρi(t) is the energy density of any constituent form of matter, radiation, etc.,

which we choose to include in our model of the Universe, but we exclude any con-

tribution from curvature (i ̸= κ). For a flat Universe, the critical density is then

given by

ρcrit(t) =
3H2(t)
8πG

. (1.22)

Thence, we may define a density parameter, Ω, as follows

Ω(t)≡ ρ(t)
ρcrit(t)

. (1.23)

With this, it is possible to fully characterise the properties and dynamics of a given

ingredient within a FRLW space-time through its w and Ω.
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1.1.3.1 Baryonic Matter

In cosmology, “baryonic” matter refers to all massive non-relativistic particles made

up of quarks and charged leptons as described by the Standard Model of Parti-

cle Physics. This definition includes charged leptons which would strictly not be

considered constituents of baryons in the field of particle physics. However, in

cosmology, “baryons” are essentially all massive particles which couple to the elec-

tromagnetic force, so they can be observed.

With their mass, baryons possess a lot of inertia compared to their average

kinetic energy such that they would not spontaneously diffuse, wherefore a baryonic

fluid with a density parameter, Ωb, would not exert any pressure on its surroundings

and its w = 0. Given Equation (1.20), ρ ∝ a−3, so that if Ωb dominates the energy

density of the Universe, the homogeneous evolution of the Universe is given by

E2(t)≈ Ωb,0a(t)−3 = Ωb,0[1+ z(t)]3. (1.24)

where Ωb,0 is the baryonic density parameter at t = 0.

Beyond its effect on the expansion history of the Universe, baryonic matter

also impacts the formation, growth and evolution of structure. Firstly, it makes the

Universe clumpier and denser by contributing 4.9± 0.1% to the energy density of

the Universe and approximately 19% of the matter in the Universe (Planck Collab-

oration et al., 2020). Secondly, baryonic matter self-interacts, so at small scales,

where electromagnetic forces become relevant, structure formation is limited by

the pressure exerted from self-interactions (see Section 1.2.4 for a more detailed

discussion of this).

1.1.3.2 Cold Dark Matter

Cold dark matter refers to any kind of non-relativistic matter which does not self-

interact, but which can be subject to gravitational interactions. Despite many dif-

ferent hypothesis existing for the fundamental nature of dark matter (see Chapter

27 of Particle Data Group et al. 2020 for a comprehensive review), at this time,

there has not been a direct detection of any dark matter candidate particle. Nev-
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ertheless, there has been convincing observational evidence for its existence from

many probes. Firstly, it was originally hypothesised in order to account for the fact

that the visible/baryonic matter seen in clusters of galaxies is not enough to explain

the galaxies’ velocity dispersion (Zwicky, 1933), while also being able to account

for the lack of observed baryonic matter at the edge of galaxies in order to explain

the observed rotational curves of the galaxies as a function of the distance from the

centre (Rubin & Ford, 1970). Since then all modern cosmological measurements

have been consistent with approximately one quarter of the energy density of the

Universe being attributed to dark matter (Mather et al., 1990; Riess et al., 1998;

Perlmutter et al., 1999; Kaiser et al., 2000; Wittman et al., 2000; Van Waerbeke

et al., 2000; Bacon et al., 2000; Eisenstein et al., 2005; Blake et al., 2011; Bennett

et al., 2013; Heymans et al., 2013; Hildebrandt et al., 2017; Planck Collaboration

et al., 2020; Asgari et al., 2021; Amon et al., 2022; Li et al., 2023). Additionally,

measurements of strong gravitational lensing around the Bullet Cluster (also known

as 1E 0657-56) have shown with a 8σ significance level that some form of dark

matter is always required to explain the observed gravitational lensing signal, even

when considering alternate theories for gravity beyond GR (Clowe et al., 2006).

This is because the Bullet Cluster is observed to have large spatial offset between

the centre of total mass and the centre of baryonic mass which cannot be explained

without any dark matter contributing to the mass of the cluster.

Although the existence of dark matter is nowadays mostly undisputed within

the field of cosmology, its nature is not as certain. Within ΛCDM (Peebles, 1982;

Blumenthal et al., 1984), it is assumed that dark matter is cold, i.e. that it is non-

relativistic and that it does not self-interact. Other types of dark matter have been

proposed which fit current observations at large-scales with a similar level of ac-

curacy as cold dark matter, but may deviate in their predictions for observations of

smaller-scale structure. Examples of such models are warm dark matter (a form

of dark matter which behaves relativistically at small scales and non-relativistically

at large scales; see Viel et al. 2013 for more details) and fuzzy dark matter (dark

matter made up of light bosons which would Compton scatter at small scales, but
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have a small probability of self-interaction at large scales; see Hu et al. 2000 for

details). Having said this, for now, it has not been possible to make precise enough

measurements of structure at small scales to significantly discern between cold dark

matter and any alternative hypothesis.

Similarly to baryonic matter, cold dark matter does not diffuse and exert ex-

ternal pressure. Hence, we may add another form of matter to the stress-energy

tensor with a density parameter, Ωc, and w = 0, so that ρ ∝ a−3 if the Universe is

dominated by dark matter such that

E2(t)≈ Ωc,0a(t)−3 = Ωc,0[1+ z(t)]3, (1.25)

where Ωc,0 is the dark matter density parameter at t = 0. As cold dark matter’s den-

sity scales in the same way with the expansion of the Universe as baryonic matter,

their densities are often grouped together to define the matter density parameter of

the Universe, Ωm, as follows

Ωm(t)≡ Ωc(t)+Ωb(t). (1.26)

Knowing that cold dark matter makes up 25.89±0.57% of the energy density

of the Universe and approximately 91.23% of all matter in the Universe (Planck

Collaboration et al., 2020), from Equation (1.14), it becomes apparent that dark

matter is the driving factor in counter-acting the acceleration of the expansion of

the Universe. Simultaneously, its lack of self-interaction means that dark matter

structure could grow from the early Universe without scattering. All this allows us

to conclude that the signal of cosmological large-scale structure (see Section 1.2) is

mostly determined by the physics of dark matter.

1.1.3.3 Dark Energy

In Section 1.1.1, we have already introduced the concept of dark energy as one of

the assumptions to derive the cosmological Einstein equations of GR given by Equa-

tion (1.8). In this equation, dark energy is represented by a cosmological constant,

Λ, which is assumed to be the same at all points in space and at all times. From the
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Friedmann equations (1.13) and (1.14), we can see that Λ, if positive, drives the ac-

celeration of the scale factor, a(t). From Equation (1.14), it becomes apparent that

the term with ä(t) ∝ Λ/3 could be folded into the stress-energy tensor by assuming

that dark energy is a fluid with w =−1. Consequently, evaluating Equation (1.19),

we trivially find that ρ(t) = ρ0 for dark energy, i.e. the density of dark energy is

constant over time. Analogously to matter, we may therefore also define a density

parameter for dark energy, ΩΛ, as follows

ΩΛ ≡ Λ

3H2
0
. (1.27)

From that, we can model the dimensionless Hubble parameter in a dark energy

dominated Universe as follows

E2(t)≈ ΩΛ. (1.28)

It is worth noting that extensions to ΛCDM exist which allow the w of dark

energy to vary with time, called wCDM. These are equivalent to different modifi-

cations of Einsteinian gravity and they are usually expressed in a parametric form

as follows w(t) = w0 + [1− a(t)]wa. However, these theories are not investigated

in this thesis and I will generally assume that w =−1. This assumption has proven

to be consistent with observations which found that w =−1.03±0.03 (Planck Col-

laboration et al., 2020). Thus, it is safe to consider dark energy as a cosmological

constant with a constant density equivalent to approximately 70% of the energy den-

sity of the Universe (Riess et al., 1998; Perlmutter et al., 1999; Planck Collaboration

et al., 2020).

1.1.3.4 Radiation

All relativistic components in the Universe are typically classed as radiation. From

the Standard Model of Particle Physics, the only fundamental particles which are

typically relativistic are the bosons and the leptons without any electromagnetic

charge, i.e. the neutrinos. Out of the bosons, the only one which has a large enough

mean free path to be cosmologically relevant is the photon. Therefore, radiation in
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cosmology can be thought of as only being constituted by photons and neutrinos.

Additionally, most of the radiation in the Universe can be attributed to back-

ground radiation, i.e. a homogeneous and isotropic emission from the early Uni-

verse during which the emission rate of radiation was extremely large when com-

pared to today.

After the Big Bang (see 1.1.4), photons were produced everywhere in the early

Universe at high rates during baryogenesis (i.e. the creation of baryonic matter such

that the production of any anti-matter was outpaced) and big bang nucleosynthesis

(i.e. the condensation of gluons and quarks into nucleons, such as protons and

neutrons, as the Universe cooled). However, the photons’ mean free path length

remained shorter than a few kpc as long as the Universe was a hot plasma in which

all emitted photons were quickly absorbed or scattered. Once the Universe had ex-

panded more and cooled down, the electromagnetic binding energies were finally

sufficient to allow for recombination to occur at z ≈ 1,100 (Weinberg, 2008). Dur-

ing recombination, the newly formed nuclei became neutral atoms which released

black body radiation until reaching their ground-state. Thanks to this, the Universe

was no longer opaque and filled with hot plasma, but instead it became transpar-

ent and electrically neutral. From this point on, photons were no longer in thermal

equilibrium with the rest of the Universe, i.e. photon decoupling had occurred. As a

result of this, the entire Universe is permeated with photons that were only in ther-

mal contact with matter at the time of recombination. Since these emissions have

experienced more than 13 Gyrs of cosmological redshift, their central wavelength is

now in the microwave regime, so it is known as the Cosmic Microwave Background

(CMB). Observing the CMB thus allows one to directly probe the temperature of the

Universe at recombination and any anisotropies in the emission due to primordial

density fluctuations (see Section 1.2.1).

Within the first second after the Big Bang, the Universe mostly consisted of

electrons, positrons, nucleons, photons and neutrinos. Electron-positron interac-

tions through the weak nuclear force were also coupled to neutrinos which meant

that they were all in thermal equilibrium. As the Universe expanded, the rate of
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electron-positron interactions slowed down considerably, so neutrinos thermally de-

coupled from the rest of the Universe. This event created the homogeneous and

isotropic Cosmic Neutrino Background (CNB; see Lesgourgues et al. 2013 for a

detailed review) which is analogous to the CMB.

To define the equation of state of each type of radiation, it is useful to formalise

how the energy density due to radiation may be incorporated into the stress-energy

tensor. Since we know that the vast majority of radiation in the Universe comes

from homogeneous and isotropic radiation backgrounds, we may assume that the

distribution of radiation in phase space only depends on energy, momentum and

time. For particles with a momentum, Pµ = (E, pi) where pi ∈ R3, at time t, the

stress-energy tensor is given by (Lesgourgues et al., 2013),

T µ

ν (t) = g
∫ d3 p

(2π)2
PµPν

E
f (p, t), (1.29)

where g is the number of internal degrees of freedom of the particle, pi
i = p and

f (p, t) is the statistical distribution of particles in phase-space. The diagonal com-

ponents of T µ

ν (t) give

T 0
0 (t) = ρ = g

∫ d3 p
(2π)2 E f (p, t), (1.30)

T i
i (t) = P(t) =−g

∫ d3 p
(2π)2

p2

3E
f (p, t). (1.31)

Since photons are massless and neutrinos have very small masses, we may take

E = p in both cases (Einstein, 1905). Combining Equations (1.30) and (1.31) gives

that P = ρ/3, so that ρ ∝ a−4 in a radiation-dominated Universe. In such a case

E2(t)≈ ΩR,0a(t)−4 = ΩR,0[1+ z(t)]4, (1.32)

where ΩR,0 is the density parameter for all types of radiation at t = 0, and it is given

by

ΩR(t) = Ωγ(t)+Ων(t), (1.33)
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where Ωγ and Ων are the density parameters for photons and neutrinos, respectively.

To find the equation of state of neutrinos, we may take Equations (1.30) and

(1.31) and consider two cases: one where the particles in question are bosons (i.e.

photons, γ) which follow Bose-Einstein statistics and another where we consider

fermions (i.e. neutrinos, ν) which follow Fermi-Dirac statistics. In each case,

f (p, t) takes the form of the joint Bose-Einstein/Fermi-Dirac distribution of the

corresponding particle-antiparticle pair. Assuming that the particles in question are

relativistic, one can show that

ρi = 3Pi =


π2

30 gγT 4
γ , if i = γ ,

7
8

π2

30 gνT 4
ν , if i = ν ,

(1.34)

where Tγ and Tν are the temperatures at thermal equilibrium of the photon and

neutrino backgrounds, respectively. Given this, gγ

gν
= 7

8(Tγ/Tν)
−4. Considering that

the specific entropy per comoving volume, si, is given by si = ∂Pi/∂Ti, then si ∝

T−3
i . We also know that si must be conserved which can be used to show that

at decoupling Tν/Tγ = (4/11)1/3. Relating this back to Equation (1.34), we can

express the density of neutrinos as a function of the photon density as follows

Ων(t) = Neff Ωγ(t)
7
8

(
4
11

) 4
3

, (1.35)

where Neff is the effective number of neutrino species. Neff is included as an ad-

ditional parameter for two reasons. Firstly, historically it was not known with cer-

tainty how many active light neutrino generations there are. Nowadays, thanks

to electroweak measurements from Z-boson decays (ALEPH Collaboration et al.,

2006), we know that there are three different generations of neutrinos. Secondly, de-

spite there being three species of neutrinos, it is usually assumed that Neff = 3.044

due to higher-order corrections from neutrino mixing and due to the neutrino de-

coupling not being instantaneous (de Salas & Pastor, 2016; Akita & Yamaguchi,

2020).
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1.1.4 Expansion History and the Big Bang

With all the ingredients of the Universe described in Section 1.1.3, we can combine

their impacts on the energy content and the background expansion of the Universe

to rewrite the Friedmann equations in Equations (1.13) and (1.14) as follows

H(t)2

H2
0

= (Ωc,0 +Ωb,0)a(t)−3 +(Ωγ,0 +Ων ,0)a(t)−4 +Ωk,0a(t)−2 +ΩΛ, (1.36)

where, for completeness, the density parameter due to the curvature in the FLRW

metric at t = 0, Ωk,0 ≡ −k/H2
0 , is also included1. Figure 1.1 shows how each of

the terms in Equation (1.36) scales over the entire cosmic history of the Universe to

define the background expansion of the Universe.

When inspecting Figure 1.1, the Friedmann equations and the FLRW met-

ric, one may realise that the scale factor, a(t), asymptotically approaches a = 0 as

t →∼ 1/H0. Combined with the fact that ȧ(t) > 0, this means that all space-like

coordinates within a FLRW metric tend to approach each other until they create a

singularity at a(t) = 0. This singularity, known as the Big Bang, can be thought

of as the origin of the time-like coordinate in the FLRW metric. Approaching this

singularity going back in time, ρ → ∞ and T → ∞. Thus, all matter in the Universe

was at some point in thermal contact.

1.2 Growth of Large-Scale Structure
The discussion of The Standard Model of Cosmology in Section 1.1 describes the

background expansion of the Universe as a perfect and homogeneous fluid described

by ΛCDM. However, as we know from observations (and from our own anthropo-

logical existence), the Universe is not perfectly homogeneous. In fact, it has struc-

ture even at large scales. These deviations from homogeneity can exist due to the

quantum mechanical nature of matter producing random fluctuations in the density

of the early Universe. Section 1.2.1 discusses the origins of these primordial mat-

1Note that from this point forward, I choose the shorthand notation for the density parameters
which drops the zero subscript, so unless time-dependence is explicitly stated, any Ω is given at
t = 0.
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Figure 1.1: History of the density parameters, Ωi(t), of all of the ingredients of ΛCDM
discussed in Section 1.1.3 as a function of look-back time, t, in Gyrs and the
associated scale factor, a(t). The solid black line shows the density parame-
ter for cold dark matter, Ωc, the pink solid line shows the density parameter
for baryonic matter, Ωb, the purple dashed line shows the density parameter
for dark energy, ΩΛ, the blue dot-dashed line shows the density parameter of
neutrinos, Ων , and the orange dotted line shows the density parameter of pho-
tons/light, Ωγ . The vertical light gray dashed line indicates recombination at
z ≈ 1,100. Figure made by the author in accordance with Planck Collaboration
et al. (2020).

ter fluctuations, how they grew to cosmological scales with inflation (Guth, 1981;

Linde, 1982), and shows how they are typically modelled within ΛCDM. In Sec-

tion 1.2.3, I show how the primordial fluctuations grow with time within the linear

regime. To complete this, in Section 1.2.4, I discuss how at small scales baryonic

effects cause deviations from linear growth of structure, and how such deviations

may be modelled.

These variations in structure are then traced by the galaxies and their dark

matter halos which form in the late Universe, allowing us to use galaxy observations

as probes of the underlying large-scale structure (see Section 1.3).
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Figure 1.2: Map of the temperature anisotropies, δT , observed in the cosmic microwave
background by the ESA Planck space observatory (Planck Collaboration et al.,
2020). The grey areas indicate pixels which mask the galactic foreground. Fig-
ure made by the author with the Planck Collaboration et al. (2020) data.

1.2.1 Primordial Matter Fluctuations

After the Big Bang, as a(t) in the FLRW metric (see Section 1.1.2) increases, the

Universe expands, cools down and matter particles begin to appear, while radiation

is emitted as discussed in Section 1.1.3.4. Since the creation, annihilation, emis-

sion and scattering of the fundamental particles in the early Universe are inherently

stochastic processes governed by quantum mechanics, it is at this stage that ran-

dom fluctuations in the underlying density of the Universe appear. The overdense

regions of these fluctuations become seeds of attractors which first aggregate dark

matter and which, after recombination, aggregate baryonic matter too.

At first, these fluctuations are at subatomic scales which can grow in scale as

the Universe expands. However, when taking into consideration observations of

large-scale structure such as the CMB shown in Figure 1.2, the expansion rate as

predicted by standard ΛCDM is not enough to explain the scales of the fluctuations

at recombination. Some additional problems also arise with this picture of the seeds

for large-scale structure growth. From Figure 1.2, one can infer that the Universe is



1.2. Growth of Large-Scale Structure 65

remarkably homogeneous at recombination with a root-mean square of the temper-

ature fluctuations deviating by only 0.1% from the mean temperature of T ≈ 2.725

K (Planck Collaboration et al., 2020). However, this seems highly unlikely to be

the case by the time recombination occurs at z ≈ 1,100 when only considering the

expansion history of the Universe as shown in Figure 1.1. To quantify this, we can

define the particle horizon, dhorizon(z), as the maximum angular diameter distance

which a particle travelling at the speed of light could have travelled at a given age

of the Universe, tage(z) as follows

dhorizon(z)≡ a(z)
∫ tage(z)

0

dt
a(t)

=
1

1+ z

∫
∞

z

dz
H(z)

. (1.37)

Since the Universe is matter-dominated during recombination, we may assume

Equation (1.25) applies, such that

dhorizon(z) =
2√

Ωm,0 H0 (1+ z)

[
1− (1− z)−1/2

]
. (1.38)

Thus, at recombination, dhorizon(z = 1,100) ≈ 2 degrees. This implies that a given

point in the sky at the time of recombination only had time to be in causal contact

with the matter within two degrees around it. In other words, it is highly unlikely

for the entire cosmic microwave background to be approximately in thermal equi-

librium as observed if the expansion history implied by ΛCDM is correct. This is

known as the horizon problem and it inspired the proposition of one more ingredi-

ent to the Universe: an inflaton field (Guth, 1981; Linde, 1982). Inflation theory

proposes a scalar field with negative pressure, akin to dark energy, which drives a

brief period of exponentially accelerated expansion of the Universe between 10−36

and 10−32 seconds after the Big Bang. With that, the inflaton field greatly expands

the particle horizon at recombination to be larger than the observable Universe, as is

observed in the CMB. Simultaneously, it also solves the so-called flatness problem,

which is concerned with the apparent fine-tuning needed in ΛCDM to ensure that

the observed Gaussian curvature in the FLRW metric, k ≈ 0. Inflation solves this

too by expanding space-time rapidly to such an extent that any non-zero curvature
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vanishes to near zero even at the scales of the observable Universe. This hypothet-

ical scalar field is then thought to decay away into fundamental Standard Model

particles and contribute to the radiation density of the Universe.

Another consequence of this rapid expansion due to inflation is that it predicts

that the primordial curvature fluctuations of the Universe are distributed as a scalar

near-Gaussian random field of curvature perturbations in three-dimensional space,

R. This random field is given by (Liddle & Lyth, 2000),

⟨R(kkk)R(kkk′)∗⟩ ≡ 8π
3
δ (kkk− kkk′)PR(|kkk|), (1.39)

where ⟨·⟩ indicates the average over all k and k′, kkk is the three-dimensional wavevec-

tor, PR(|kkk|) is the power spectrum of the primordial curvature fluctuations, which is

typically parameterised with a power law as follows

PR(|kkk|) = 2π2

|kkk|3 As

(
|kkk|

kpivot

)ns−1

, (1.40)

where As is the primordial amplitude which correlates with the energy scale a which

inflation is onset, ns is the scalar spectral index which is a function of the duration of

inflation, and kpivot is a reference pivot wavenumber. As ns is measured to be close to

one, i.e. ns = 0.965±0.004 (Planck Collaboration et al., 2020), the power spectrum

of the primordial curvature fluctuations is considered “quasi scale-invariant”.

1.2.2 Perturbation Theory

The fluctuations in density in the early Universe discussed in Section 1.2.1 and their

growth over time is described through the modelling of localised small perturbations

from the mean of the density field in space. This can be done through expanding

the Einstein field equations for the FLRW metric for small density perturbations

(Lifshitz, 1946; Lifshitz & Khalatnikov, 1963) which has led to the development of

gauge-invariant covariant perturbation theory (Bardeen, 1980; Kodama & Sasaki,

1984; Ellis & Bruni, 1989; Ellis et al., 1989; Mukhanov et al., 1992). In this frame-

work, the stress-energy tensor in Equation (1.8) is perturbed as Tµν → T µν +δTµν .

However, for the purposes of modelling observations of large scale structure made
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by cosmological surveys, such a treatment is not strictly necessary and Newtonian

perturbation theory is a good approximation. Newtonian perturbation theory arises

out of relativistic perturbation theory when only considering the scalar perturba-

tions to the stress-energy tensor given by δρ and δP. The basis of Newtonian per-

turbation theory is the so-called Newtonian or shear-free gauge which makes any

non-Newtonian effects on the density perturbations disappear, such that the Poisson

equation as given in Equation (1.1) fully describes gravitational interactions. Addi-

tionally, we also assume that the energy and matter in the Universe can be modelled

as a perfect fluid such that the continuity equation given in Equation (1.19) and

Euler’s equation (Euler, 1757) apply. The latter is given by

∂uuu
∂ t

∣∣∣∣
rrr
+(uuu ·∇∇∇rrr)uuu =− 1

ρ
∇∇∇rrrP−∇∇∇rrrΦ, (1.41)

where rrr and t represent the physical space and time coordinates and uuu is the velocity

distribution of the perfect fluid (which is assumed to be |uuu| ≪ c).

Firstly, we transform these equations into comoving spatial coordinates, ΣΣΣ, as

rrr = a(t)ΣΣΣ. Therefore, Equations (1.1), (1.19) and (1.41) become

∇
2
ΣΣΣΦ = 4πGa2

ρ, (1.42)

∂ρ

∂ t

∣∣∣∣
ΣΣΣ

− ȧ
a

ΣΣΣ ·∇∇∇ΣΣΣρ +∇∇∇ΣΣΣ · (ρuuu) = 0, (1.43)

a
∂uuu
∂ t

∣∣∣∣
ΣΣΣ

− ȧΣΣΣ ·∇∇∇ΣΣΣuuu+uuu ·∇∇∇ΣΣΣuuu =− 1
ρ

∇∇∇ΣΣΣP−∇∇∇ΣΣΣΦ, (1.44)

where uuu(ΣΣΣ, t) = ȧ(t)ΣΣΣ(t)+a(t)vvv(ΣΣΣ, t) and vvv ≡ Σ̇ΣΣ is the peculiar velocity of the fluid.

Next, we apply a small perturbation in the density as follows

ρ(ΣΣΣ, t)→ ρ(t)+δρ(ΣΣΣ, t)≡ [1+δ (ΣΣΣ, t)]ρ(t),

P(ΣΣΣ, t)→ P(t)+δP(ΣΣΣ, t),

Φ(ΣΣΣ, t)→ Φ(t)+δΦ(ΣΣΣ, t),

(1.45)

where δ (ΣΣΣ, t) is the matter/energy density contrast from the mean density, ρ(t),



1.2. Growth of Large-Scale Structure 68

which is associated with the mean pressure, P(t), and the mean gravitational poten-

tial, Φ(t). Upon making these substitutions and subtracting the zeroth-order terms,

the perturbed fluid equations are given by

∇
2
ΣΣΣδΦ = 4πGa2

ρδ , (1.46)

δ̇ +
1
a

∇∇∇ΣΣΣ · [(1+δ )vvv] = 0, (1.47)

v̇vv+
ȧ
a

vvv+
1
a
(vvv ·∇∇∇ΣΣΣ)vvv =− 1

aρ(1+δ )
∇∇∇ΣΣΣδP− 1

a
∇∇∇ΣΣΣδΦ. (1.48)

This system of non-linear differential equations can be combined by differen-

tiating Equation (1.47) with respect to time and combining it with Equations (1.46)

and (1.48) such that

δ̈ +
2ȧ
a

δ̇ −4πGρδ =
1
a2 ∇∇∇ΣΣΣ · (vvv ·∇∇∇ΣΣΣvvv)− 1

a2 [a∇∇∇ΣΣΣ · (δvvv)]+
1

a2ρ
∇∇∇ΣΣΣ ·

∇∇∇ΣΣΣδP
1+δ

. (1.49)

This equation is valid for all orders of δ including non-linear orders which

take into consideration the Hubble friction, but higher than second-order terms only

become relevant for large values of δP.

1.2.3 Linear Structure Growth

Assuming that the matter/energy density contrast of the Universe is small, δ ≪ 1,

and neglecting any other forces which may be at play other than fluid pressure and

gravity, we may linearise Equation (1.49) such that

δ̈ +
2ȧ
a

δ̇ −4πGρδ =
c2

s
a2 ∇

2
ΣΣΣδ , (1.50)

where cs is the speed of sound within the perfect fluid defined as c2
s ≡ δP/ρδ .

Rewriting this equation for the Fourier transform of δ (ΣΣΣ, t), we obtain

¨̃
δ (kkk, t)+

2ȧ(t)
a(t)

˙̃
δ (kkk, t)+

[
|kkk|2c2

s
a(t)2 −4πGρ(t)

]
δ̃ (kkk, t) = 0, (1.51)

where kkk is the comoving wavevector in ΣΣΣ-space and δ̃ (kkk, t) is defined as
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δ̃ (kkk, t)≡
∫

d3
Σe−ikkk·ΣΣΣ

δ (ΣΣΣ, t). (1.52)

If 4πGρ(t)≫ |kkk|2c2
s/a(t)2, the form of Equation (1.51) allows one to separate

the spatial and temporal components of δ̃ (kkk, t), so one can define

D̈(t)+2H(t)Ḋ(t)−4πGρ(t)D(t) = 0, (1.53)

where H(t) is again the Hubble parameter and D(t) is the linear growth rate of

structure. Such a separation implies that, if the initial conditions for the density

contrast field are known, it is possible to get the density contrast at any time, t, to

first order just by applying the linear growth rate, D(t), such that δ̃ (kkk, t)=D(t)δ̃ (kkk).

This assumption of scale-independent linear structure growth breaks down in the

small-scale regime (i.e. large |kkk|). From Equation (1.51), we find that the limit of

this regime is given by the Jeans scale, kJ, as follows (Jeans, 1902),

kJ(t) = [4πGρ(t)]
1
2

a(t)
cs

. (1.54)

As |kkk|→ kJ, the scale-dependent δ̃ (kkk, t) term in Equation (1.51) becomes dominant,

such that any oscillations in the matter fluid at such small scales would grow in a

scale-dependent manner. Subsequently, for |kkk|> kJ, the oscillations cease growing

at all. During the radiation-dominated era and assuming a baryonic matter density

of ωb = 0.04, it can be shown that kJ ≈ (1+ z)2/(2×106 Mpc) (Longair, 1989). kJ

is minimal at matter-radiation equality, zeq ≈ 3,400, giving kJ ∼ 1Mpc−1. This im-

plies that, during the radiation-dominated era, structure at extragalactic scales grows

in a near scale-independent manner. This applies for even smaller scales during

the matter-dominated era, as the speed of sound of baryonic matter is substantially

smaller than the speed of sound of a radiation dominated Universe. Assuming again

that ωb = 0.04, one finds that kJ ∼ 105 Mpc−1 at recombination, z ≈ 1,100 (Lon-

gair, 1989). Consequently, during matter domination, any density fluctuations at

sub-galactic scales can grow. Hence, we can conclude that scale-invariant structure

growth is a valid assumption at extragalactic scales for most of cosmic history.
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Given this, as different types of energy dominate the energy density of the

Universe, the linear growth rate of structure will vary accordingly. In the early

Universe, during the radiation-dominated era, as discussed in Section 1.1.3.4, P =

ρ/3 and ρ ∝ a−4, such that a ∝ t1/2. In this case, Equation (1.53) can be rewritten

as

D̈c(t)+
1
t

Ḋc(t) = 0, (1.55)

where Dc(t) is the linear structure growth with time affecting cold dark matter (this

excludes baryonic matter as this equation does not take into consideration any elec-

tromagnetic interactions between the radiation and the baryonic matter). Therefore,

in the radiation-dominated era, there are two possible solutions for the structure

growth given by

Dc(t) = Dc,0 +D′
c,0 ln(t/t0), (1.56)

where Dc,0, D′
c,0 and t0 are constants which depend on the initial conditions. From

this we can conclude that during the radiation-dominated era before recombination

any inhomogeneities in the density would either stay static or grow slowly with

time.

Once (dark) matter becomes dominant in the Universe, we know from Sec-

tions 1.1.3.1 and 1.1.3.2 that ρ ∝ a−3 and therefore a ∝ t2/3. Altering Equa-

tion (1.53) accordingly, and taking matter to be pressureless (cs = 0),, we find that

D̈m(t)+
3
4t

Ḋm(t)−
2

3t2 Dm(t) = 0, (1.57)

where Dm(t) is the linear structure growth rate of all matter. The matter-dominated

era also allows two possible solutions for the structure growth which are given by

Dm(t) = Dm,0

(
t
t0

)−1

+D′
m,0

(
t
t0

)2/3

. (1.58)

Assuming that density fluctuations appear at early times, the t−1 mode in Dm(t) is

suppressed at late times, so the realised mode is the t2/3 term. Thus, for most of the
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cosmic history of the Universe, the perturbations to the mean matter density grow

as a power law with time.

In the late Universe, as the era of dark energy dominance begins, the back-

ground expansion of the Universe is largely determined by the cosmological con-

stant discussed in Section 1.1.3.3. In this scenario, w = −1, so ρ is independent

of the scale factor, a(t), so a ∝ eHt . This then allows one to make the following

approximation of Equation (1.53),

lim
ΩΛ→1

[
D̈m(t)+2H(t)Ḋm(t)

]
→ 0. (1.59)

In this limit, the equation has the two following solutions

Dm(t) = Dm,0 +D′
m,0 e−2H(t)t . (1.60)

Consequently, dark energy suppresses the growth of linear structure as time pro-

gresses.

1.2.3.1 Linear Matter Power Spectrum

Neither the density contrast, δ , nor the structure growth rate, D, can be directly

observed by cosmological surveys. Instead we observe tracers of the underlying

large-scale structure (such as galaxies or the cosmic microwave background). To

model this, we are interested in understanding the statistics of the fluctuations in the

matter density through its three-dimensional matter power spectrum, Pδ (|kkk|, t, t ′),
defined as

⟨δ̃m(kkk, t)δ̃m(kkk′, t ′)⟩= (2π)3
δ
(3)
D (kkk+ kkk′)Pδ (|kkk|, t, t ′), (1.61)

where δ
(3)
D is the three-dimensional Dirac delta function.

As the initial conditions at t ≈ 0 are set by the primordial curvature fluctuations

which remain after inflation, as discussed in Section 1.1.4, the equal-time three-

dimensional matter power spectrum, Pδ (|kkk|, t), which gives the correlations between

matter field fluctuations at a given look-back time (t = t ′), can be modelled as
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Pδ (|kkk|, t) = T 2(|kkk|)D2(t)PR(|kkk|), (1.62)

where PR(|kkk|) is the three-dimensional power spectrum of primordial curvature

fluctuations as defined in Equation (1.40) and T (|kkk|) is the transfer function which

depends on the solutions to the spatial part of Equation (1.51). To parametrise the

linear matter power spectrum, it is common to use the parameter σ8 which is defined

by

σ
2
R ≡

∫
dk Pδ (k, t = 0)W (k,R), (1.63)

where R is the characteristic scale of the kernel function, W (k,R), which is given

by

W (k,R) =
3k2

2π2(kR)3

[
sin(kR)− kRcos(kR)

]
, (1.64)

where R is usually set to 8h−1Mpc, so σ8 can the interpreted as the amplitude of

the matter overdensity fluctuations at scales of 8h−1Mpc. This scale is chosen as a

convention as σ8 is roughly of order unity for realistic cosmological models.

As with the growth rate, D(t), in Section 1.2.3, the transfer function depends

on the type of matter/energy which dominates the expansion of the Universe at a

given time. For a given cosmic epoch, T (|kkk|) is given by the Einstein-Boltzmann

equations which take into consideration radiative coupling, the fluid equations given

in Equation (1.49) and the evolution of the metric (see e.g. Kodama & Sasaki 1984;

Sugiyama 1989).

These equations are typically solved numerically using tools such as CAMB

(Code for Anisotropies in the Microwave Background; Lewis et al. 2000) or

CLASS (Cosmic Linear Anisotropy Solving System; Lesgourgues 2011). For ex-

ample, Figure 1.3 shows the matter power spectrum as calculated with CAMB

assuming a ΛCDM cosmology consistent with Planck Collaboration et al. (2020)

at three different look-back times. In Figure 1.3, the power spectrum at large

scales (small k), is largely determined by the primordial power spectrum such that
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P(k) ∝ kns−1. This trend continues until the peak of all three power spectra which

gives the scale of the horizon of Universe when matter-radiation equality occurs,

keq, where Ωm(teq) = ΩR(teq). When k < keq, the scale of the fluctuations exceeds

the horizon at keq, so any such modes would only enter the horizon during the

matter-dominated epoch, while for k > keq, the perturbations enter the horizon dur-

ing the radiation-dominated epoch. At k > keq, one can also notice some wiggles in

the power spectrum. These occur at the characteristic scale of Baryonic Acoustic

Oscillations (BAOs). These BAOs occur because before recombination baryonic

matter and photons are coupled through Thomson scattering. After matter-radiation

equality, as the dark matter inhomogeneities begin to grow. Any inhomogeneities

in the baryonic matter can only grow until Thomson scattering smooths away any

inhomogeneities, in other words, the perturbations to baryonic density oscillate at

a scale set by speed of sound in the baryonic plasma. As soon as recombination

occurs and baryonic matter becomes electrically neutral; photons and baryons de-

couple and these oscillations are imprinted into the matter density perturbations.

Figure 1.3 also shows how the matter power spectrum evolves with look-back time

(or redshift): as the particle horizon grows with decreasing look-back time, the over-

all power of the power spectrum at all modes increases, because a larger comoving

volume is causally coupled with itself.

To couple the matter power spectrum to observable quantities in galaxy clus-

tering surveys, we assume that the number density of galaxies traces the underlying

matter density contrast, δ , as a function of some linear bias, given by b(|kkk|) as

follows

Pgg(|kkk|, t) = b2(|kkk|)Pδ (|kkk|, t), (1.65)

where Pgg(|kkk|, t) is the three-dimensional galaxy power spectrum which is defined

as

⟨δ̃g(kkk, t)δ̃g(kkk′, t)⟩= (2π)3
δ
(3)
D (kkk+ kkk′)Pgg(|kkk|, t), (1.66)
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Figure 1.3: Plot of the three-dimensional matter power spectrum, Pδ (k,z), as a function
of both wavenumber, k, and redshift, z. The solid lines show the linear matter
power spectrum, while the dashed lines show the non-linear matter power spec-
trum including baryonic effects at small scales. The light blue line shows the
power spectra at z = 0, the orange lines at z = 1.0 and the red lines at z = 2.0.
All power spectra were calculated using CAMB (Code for Anisotropies in the
Microwave Background; Lewis et al. 2000) and assuming a flat ΛCDM cos-
mology consistent with Planck Collaboration et al. (2020) and a halofit model
(Smith et al., 2003; Takahashi et al., 2012; Bird et al., 2012) for the non-linear
matter power spectrum with Abary = 3.13, ηbary = 0.603 and log(TAGN) = 7.8.
Figure made by the author.

where δ̃g(kkk, t) is the Fourier transform of δg(ΣΣΣ, t)≡ δn(ΣΣΣ, t)/n(t) where the number

distribution of galaxies, n(t), is often assumed to be point-like as follows

n(t) = n(t)+δn(ΣΣΣ) = ∑
i

δ
(3)
D (ΣΣΣ−ΣΣΣi). (1.67)

This relationship is usually assumed to hold within the linear regime where

δ ≪ 1, the structure due to galaxy sub-halos is not resolved, non-linearities due to

baryonic feedback are small and gravitational non-linearities are not dominant.

1.2.4 Non-Linear Structure Growth

Throughout Section 1.2.3, there have been repeated assumptions of linearity: only

considering linear perturbations to the fluid equation, neglecting any additional in-



1.2. Growth of Large-Scale Structure 75

teractions due to baryonic physics (particularly at small scales) and assuming a lin-

ear galaxy bias. At large scales, these assumptions have been shown to be accurate,

but as we aim to model smaller scales, scales smaller than |kkk| ∼ 10−1 hMpc−1, there

can be substantial deviations from linearity in the observed matter power spectrum

(see Figure 1.3).

As δ approaches unity at smaller scales, the non-linear terms in Equa-

tion (1.49) become relevant. In this, so-called “weak” non-linear regime, the al-

lowed solutions for δ (kkk) have phases which are substantially shifted from their

initial values. As a consequence, the distribution of the density fluctuations be-

come increasingly non-Gaussian as they deviate from the Gaussian primordial field

(Davis et al., 1985; Sahni & Coles, 1995; Jenkins et al., 1998).

At even smaller scales, additional non-linearities may become relevant as the

matter distribution deviates even further from Gaussianity and the strength of bary-

onic interactions becomes comparable to the magnitude of gravitational potentials.

This is know as the regime of “strong” non-linearity.

At scales near |kkk| ∼ 2hMpc−1, as shown in Figure 1.3, non-linearities in

the matter power spectrum start contributing a considerable fraction of the over-

all power, as gravitationally bound structures subject to baryonic physics start to

form at these scales. The dynamics of the contents of such objects are non-trivial

and highly non-linear as hydrodynamical effects, magnetodynamics, star formation

and the thermodynamics of intergalactic gas start influencing the growth of struc-

ture of baryons. Therefore, these effects will not only alter the overall matter power

spectrum, but also complicate the correlation between the distribution of galaxies

and the underlying dark matter distribution.

Regarding the matter power spectrum, the most accurate way to track any non-

linear effects is the use of large numerical simulations which include any baryonic

interactions at small scales. However, since these simulations are difficult and ex-

pensive to compute, it is common to opt for semi-analytical models which are cali-

brated with simulations. One popular such model is the halo model (Seljak, 2000;

Peacock & Smith, 2000; Ma & Fry, 2000) which assumes that all matter is bound
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within spherical halos and their clustering can be explained by considering the clus-

tering between halo pairs and the clustering within halos themselves. Nevertheless,

it has been found that a purely analytical halo model does not accurately recover the

non-linearities in the matter power spectrum when compared to simulations (Tin-

ker et al., 2005; Valageas & Nishimichi, 2011; Mead et al., 2015; van Daalen &

Schaye, 2015). For this reason, as is the case in this thesis, it is common to opt for

a fitting function approach based on the halo model which is calibrated by simula-

tions such as halofit (Smith et al., 2003; Takahashi et al., 2012; Bird et al., 2012)

or HMCODE (Halo Model code; Mead et al. 2015, 2016, 2021). These models ei-

ther create a functional form for the halo model or they alter the halo model as a

function of some parameters. The latter approach is the one used in HMCODE and

it has been found to yield better agreements with simulations (Mead et al., 2021).

The main free parameters typically varied in these models is the baryonic feedback

amplitude, Abary, which scales the halo-mass concentration with redshift, and the

halo bloating parameter, η , which scales the size of the halo mass density profile

(Navarro et al., 1997).

The calibration of halo model fitting functions is typically based on hydrody-

namical simulations, such as COSMO-OWLS (Le Brun et al., 2014) or BAHAMAS

(McCarthy et al., 2017), which include accurate modelling for gravitational col-

lapse, star formation, thermodynamics, etc. Among these effects, one of the dom-

inant factors for the suppression of structure formation at small scales in baryonic

feedback due to Active Galactic Nuclei (AGN). AGN are thought to be supermas-

sive black holes at the centres of galaxies which are actively accreting interstellar

gas which subsequently becomes heated as it is accelerated by the black holes’ grav-

ity. This effect can heat the gas surrounding a supermassive black hole to such an

extend that the gas expands outside of the virial radius of the galaxy’s halo (Schaye

et al., 2010; van Daalen et al., 2011; Martizzi et al., 2014; van Daalen & Schaye,

2015). This effect can therefore significantly disturb the density profile of the bary-

onic matter in a halo which affects Abary and η (Duffy et al., 2010). Thus, AGN

feedback is often implicitly encoded in the semi-analytical fits in halofit or HM-
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CODE, while the most recent iteration of HMCODE (Mead et al., 2021) allows to

explicitly vary the amplitude of AGN feedback as a function of the average temper-

ature of AGN (TAGN).

If we are interested in modelling the three-dimensional galaxy power spectrum

from the matter power spectrum, as defined in Equation (1.66), baryonic physics

add an additional layer of complication as Equation (1.65) may not hold for large

values of |kkk| as the galaxy bias, b, deviates from linearity too. Within the context of

the halo model, firstly the clustering of halos may not necessarily follow the same

power spectrum as dark matter which may be quantified by a halo bias (Cole &

Kaiser, 1989). Additionally, it is typical to assume a linear galaxy bias with b = 1

is equivalent to assuming that each dark matter halo has one galaxy at its centre.

Although to first-order, this is roughly the case, we know that this cannot be the full

picture, since systems of multiple galaxies are known to exist frequently, while it

is also known that most galaxies have multiple dwarf galaxies surrounding them.

There are many models which address this scale dependence in the halo and galaxy

bias through parametric alterations of the relation shown in Equation (1.65) (Cole

& Kaiser, 1989; Mo & White, 1996; Jing, 1998; Sheth et al., 2001; Seljak, 2000;

Pillepich et al., 2010; Tinker et al., 2010; Bhattacharya et al., 2011).
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1.3 Galaxy Surveys as Probes of Large-Scale Struc-

ture
In Section 1.2, I have outlined how perturbations in the energy/matter density of the

Universe evolve and grow under ΛCDM, how we may quantify them and how they

may be traced by galaxies. These concrete predictions of ΛCDM for the statistical

distribution of dark matter and galaxies allows us to test the model through galaxy

surveys which constrain these statistics in the late Universe. There are three main

probes of this which can be constructed from observables: galaxy clustering, weak

gravitational lensing and galaxy-galaxy-lensing.

In Section 1.3.1, I discuss galaxy clustering which refers to the study of the

spatial distribution of galaxies in the sky and along the line of sight. Section 1.3.2

presents weak-gravitational lensing and how this observable measures cosmic shear,

which is a direct probe of the underlying matter power spectrum. Section 1.3.3

shows how both of these ideas can be combined to measure how galaxies in the

foreground gravitationally lens galaxies in the background. Lastly, Section 1.3.4

discusses the current state-of-the-art in the field of cosmological galaxy surveys as

well as future prospects.

1.3.1 Galaxy Clustering

Galaxy clustering is the phenomenon of galaxies spatially coalescing at certain

scales in accordance with the underlying distribution of matter and the dynamics

of galaxy evolution. This can be measured by galaxy surveys through the map-

ping of galaxy positions on the sky, xxx, and along the line of sight by measuring

the galaxies’ redshift, z. Once this is measured, one can define summary statistics

which compress the information in the galaxy positions. The most commonly used

one is a two-point correlation function, ξgg, which is defined from theory as

ξgg(∆x ≡ |xxxi − xxx j|,z)≡ ⟨δg(xxxi,z)δg(xxx j,z)⟩, (1.68)

where i and j are indices representing different galaxy positions, ∆x≡ |xxxi−xxx j| since

we assume isotropy in ΛCDM which implies that the structure in the Universe only
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depends on the scalar distance, and δg are the deviations from the mean in the

number counts of galaxies as shown in Equation (1.66). Equation (1.66) can be

rewritten in spatial coordinates as follows

ξgg(∆x,z) =
∫ d3k

(2π)3 Pgg(|kkk|,z)e−i|kkk|∆x. (1.69)

To estimate ξgg(∆x,z) from observations, we must first discretise the domain: ∆x

is binned into separation bins with the index ι , while z is binned into redshift bins

(also known as lens bins or tomographic bins) indexed by i and j. Then, for a given

redshift bin pair, we can estimate ξgg(∆x,z) by comparing the spatial distribution

of the observed galaxies to the spatial distribution of randomly sampled points. To

do so, a commonly used estimator is the Landy-Szalay estimator (Landy & Szalay,

1993) for the observed two-point correlation function, ξ̂
(i j)
gg , given by

ξ̂
(i j)
gg (∆xι) = 1+

(
Nrand

N

)2 DD(i j)(∆xι)

RR(∆xι)
− Nrand

N

(
DRi(∆xι)

RR(∆xι)
+

DR j(∆xι)

RR(∆xι)

)
, (1.70)

where N is the number of galaxies in i and j, Nrand is the number of random points

sampled usually from a Poisson distribution or form a uniform distribution for a

perfect survey, DD(i j)(∆xι) is the number of galaxy pairs between sample i and

sample j which are at a spatial separation such that they fall within the ι th bin,

DR(i j)(∆xι) is the number of pairs between galaxy sample i and the random sample

of points which are at a spatial separation such that they fall within the ι th bin,

and RR(∆xι) is the number of point pairs from the random sample which are at a

distance n such that they fall within the ι th bin. In practice, as we are free to sample

an arbitrary number of random points, it is common to set Nrand ≫ N for better

numerical accuracy.

It is important to note that ξ̂
(i j)
gg (∆xι) may be biased due to selection effects in

the galaxy survey in question. Along the line of sight, the flux limit of the survey

implies that further away galaxies are less likely to be observed as they tend to be

fainter. At the same time, if the survey is photometric, the redshift estimates may
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be biased, so the galaxies might end up in the incorrect bin. This can in turn bias

the ξ̂
(i j)
gg (∆xι) measurements if this bias is not reflected in the redshift distribution

of the lens galaxy sample in question. In the angular direction of the sky, the galaxy

counts could be biased due to a variety of reasons which are non-isotropic: galactic

absorption, variations in the seeing from observation to observation (changing the

apparent magnitude limit as function of the direction) or masking of certain areas

due to foreground light sources such as stars. At the same time, due to the magnitude

limit (which itself may not be isotropic), an additional source of non-isotropic bias

is added called the magnification bias. As is discussed in detail in Section 1.3.2,

gravitational lensing due to matter in the foreground of a galactic light source may

focuses light such that the observed flux from the light source is boosted to the point

where it surpasses the flux limit of the galaxy survey. Therefore, a galaxy which

should not have been observed according to the selection function of the survey will

be observed, which may lead to the overcounting of galaxies. The reverse can occur

when the foreground matter changes the solid angle from the source such that flux

decreases. As this effect is correlated with the foreground dark matter distribution,

it may add additional structure to the observed galaxy count fields.

Additionally, as we consider the spatial distribution of galaxies, a random

realisation of many possible ones given the underlying galaxy power spectrum,

ξ̂
(i j)
gg (∆xι) is subject to shot noise. This is often modelled as white Poisson noise

such that

P̂gg(|kkk|,z) = Pgg(|kkk|,z)+
1

ngal(z)
, (1.71)

where P̂gg(|kkk|,z) is the inferred galaxy power spectrum and ngal(z) is the aver-

age three-dimensional galaxy number density at redshift, z. Simultaneously, the

shot noise is increasing the statistical uncertainty of the power spectrum (see e.g.

Wadekar & Scoccimarro 2020 for detailed modelling of the shot noise in the galaxy

clustering covariance).
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1.3.2 Weak Gravitational Lensing and Cosmic Shear

Gravitational lensing is a phenomenon predicted by General Relativity which in-

volves light from distant sources being deflected from its geodesic in Minkowski

space due to matter in the foreground curving space-time and light travelling along

the geodesic in this curved space-time. This phenomenon is typically split into

three regimes: strong gravitational lensing (the mass of the gravitational lens is

large enough for multiple images of the source to appear), weak gravitational lenses

(the mass of the lens slightly distorts the shape and the size of a single image) and

microlensing (the mass of the lens is small, so it does not measurably distort the

shape and size of the source, but alters its brightness, while potentially varying over

observable time scales). In this thesis, I am exclusively interested in the weak gravi-

tational lensing regime on cosmological scales. To introduce how this phenomenon

can be modelled and observed, this section follows the reviews given in Bartelmann

& Schneider (2001), Schneider (2003), Van Waerbeke & Mellier (2003), Schneider

(2006), Heavens (2009) and Kilbinger (2015).

On cosmological scales, all light emitted by distant sources, such as galaxies,

experiences weak gravitational lensing due to the matter density perturbations in

the foreground. Therefore, the weak gravitational lensing signal ought to be cou-

pled directly to the matter power spectrum. This signal, when considering only the

shape distortions of galaxies and removing any contaminating signals, is known as

cosmic shear. To model this, we alter the FLRW metric given in Equation (1.9) by

considering a nearly flat metric (k = 0) with a gravitational potential field, Φ, given

by

ds2 =
(
1+Φ

)
dt2 −

(
1−Φ

)
a2(t)dΣΣΣ

2, (1.72)

where ΣΣΣ is given in hyperspherical coordinates as defined in Equation (1.10) and

the gravitational potential field, Φ, is related to the overdensity field, δ , through the

Poisson equation as follows

∇
2
Φ =

3H2
0 Ωm

2a(t)
δ . (1.73)
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In general, any particle in motion on the worldline, xα , within space-time follows a

geodesic described by the geodesic equation as follows

d2xα

dλ 2 +Γ
α
µν

dxµ

dλ

dxν

dλ
= 0, (1.74)

where λ is the affine parameter and Γα
µν is the Christoffel symbol as given by

Equation (1.6). Considering a photon travelling within a manifold given by Equa-

tion (1.72), it must be moving on a light-like geodesic such that ds2 = 0 and there-

fore a comoving distance interval is given by dχ = ±a−1(t)dt ≡ dη (where the

positive root of the proper time interval, dη , represents an outgoing photon and the

negative root an incoming one). Assuming that the photon is incoming into the grav-

itational potential, it can be shown that the geodesic for the time-like coordinate, η ,

to zeroth order in Φ reduces to the following (Heavens, 2009),

dη

dλ
=

1
a2 . (1.75)

We can also change the coordinate frame such that the gravitational potential, Φ, is

defined as a function of the transverse comoving coordinate along the line of sight,

fk(χ), and two transverse coordinates which are perpendicular to the line of sight,

x1 and x2. Combining Equation (1.75) with the geodesic equation in the zeroth order

of Φ for x1 and x2, one can find that

d2xi

dη2 =
−2∂Φ(x1,x2, fk(χ))

∂xi
, (1.76)

where xi ∈ {1,2}. Integrating this with respect to dη =−dχ twice,

xi = fk(χ)θi −2
∫

χ

0
dχ

′[ fk(χ)− fk(χ
′)]

∂Φ(x′1,x
′
2, fk(χ

′))
∂x′i

, (1.77)

where θi is an integration constant which through a dimensionality argument must

represent a small angle deviation in the transverse direction, such that xi = fk(χ)θi

in the absence of a gravitational potential. It is important to note here that taking the
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integral along the radial direction where fk(χ) ∥ fk(χ
′) is an approximation, as in

reality the path length travelled by the photon is altered by small deviations caused

by fluctuations in the metric. Having said this, we may safely assume this so-called

Born approximation, as it is remarkably accurate in the weak lensing regime (Petri

et al., 2017). Taylor expanding ∂Φ

∂x′i
to linear order in both x1 and x2 and transforming

the coordinates to θi ≡ xi/ fk(χ), one finds that

xi = fk(χ)θi −2
∫

χ

0
dχ

′[ fk(χ)− fk(χ
′)]

(
∂Φ(θ ′

i = 0,θ ′
j, fk(χ

′))

∂θ ′
i

+θ j fk(χ
′)

∂ 2Φ(θ ′
1,θ

′
2, fk(χ

′))
∂θ ′

i ∂θ ′
j

)
. (1.78)

Thus, the deviation in xi between two nearby photons that have been lensed by Φ is

given by

∆xi(ΣΣΣ) = fk(χ)∆θ j(δi j −φi j(ΣΣΣ)), (1.79)

where δi j is the Kronecker delta and φi j is defined as

φi j(ΣΣΣ)≡ 2
∫

χ

0
dχ

′ [ fk(χ)− fk(χ
′)]

fk(χ) fk(χ ′)
∂ 2Φ(ΣΣΣ)

∂θ ′
i ∂θ ′

j
. (1.80)

In the case where the observations are of many sources in population ι which are

distributed along the line of sight according to p(ι)(χ), we can sum over Equa-

tion (1.80) for all sources in the distribution, giving that

φi j(ΣΣΣ)≡ 2
∫

χ

0
dχ

′g
(ι)(χ ′)
fk(χ)

∂ 2Φ(ΣΣΣ)

∂θ ′
i ∂θ ′

j
. (1.81)

where g(ι)(χ) is given by

g(ι)(χ)≡
∫

∞

χ

dχ
′p(ι)(χ ′)

fk(χ
′)− fk(χ)

fk(χ ′)
. (1.82)

Equation (1.79) is a linear mapping from the source to the image as it reaches
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the observer. This can be expressed with the amplification matrix, A , which is

defined as follows

Ai j ≡ δi j −φi j. (1.83)

As θi and θ j are interchangeable, Ai j must be symmetric and it has only 3 degrees

of freedom. With that, it is convenient to expand the amplification matrix into an

isotropic expansion term and a shear term as follows

Ai j =

1−κ 0

0 1−κ

+

−γ1 −γ2

−γ2 γ1

 , (1.84)

where κ is the convergence and γ ≡ γ1+ iγ2 is the complex shear. These terms relate

back to Equation (1.83) as follows

κ ≡ 1
2
(φ11 +φ22),

γ ≡ 1
2
(φ11 −φ22)+ iφ12.

(1.85)

Upon inspection of Equation (1.84), it becomes apparent that the convergence,

κ , isotropically magnifies the size of the observed image for κ > 0, while γ1

stretches the image along the θ1 axis and γ2 stretches the image of the source along

the θ2 = ±θ1 diagonal axis. The amplification matrix is also often expressed in

terms of the reduced shear, g, as follows

Ai j = (1−κ)

1−g1 −g2

−g2 1+g1

 , (1.86)

where g ≡ γ/(1− κ) = g1 + ig2. To map the image of the source from the ob-

served image, we must invert the amplification matrix. This is possible in the

weak lensing limit, where |κ| ≪ 1 and |γ| ≪ 1, and as with any invertable ma-

trix, A −1
i j ∝ 1/det(A ) holds. Therefore, the size of the image is scaled with respect

to the source by the magnification, µ , given by
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µ ≡ 1
det(A )

=
1

(1−κ)2 − γ2 ≈ 1+2κ. (1.87)

Here, µ only affects the overall size of the source, as gravitational lensing con-

serves surface brightness, the flux of the source may be magnified. Hence, in flux-

limited galaxy surveys, there may be a non-isotropic bias in the galaxy counts which

is known as the magnification bias. Although this is not a problem for current

and upcoming cosmic shear measurements (Deshpande et al., 2020; Duncan et al.,

2022), the magnification bias can be considerable in the galaxy clustering (see Sec-

tion 1.3.1) and in the galaxy-galaxy lensing signals (see Section 1.3.3). When mea-

suring galaxy shapes, the measurement is only sensitive to changes in the shape, so

one can only determine the reduced shear from observations. To illustrate how such

observations allow to probe the underlying large-scale structure, Figure 1.4 exem-

plifies the shear induced by the convergence field given by the large-scale structure

along a given line of sight. The left panel shows convergence along the line of

sight over a two-dimensional plane. On the right of Figure 1.4, we can see that

the associated shear vector field is correlated with the convergence field such that

regions with larger convergence induce a coherent shear tangential to the overdense

region. Therefore, the observed shear can be used to reconstruct the properties of

the underlying convergence.

To make the relation between the convergence, κ , of galaxy population i with

the underlying matter overdensity, δ , we can combine Equation (1.85) with the

Poisson equation given by Equation (1.73), such that

κ
(i)(ΣΣΣ) =

3H2
0 Ωm

2

∫
χ

0
dχ

′ fk(χ
′)g(i)(χ ′)
fk(χ)

δ (ΣΣΣ)

a(χ ′)
. (1.88)

The integral on the right-hand side of the equation means that κ(i)(ΣΣΣ) at a given

look-back time, z or χ , is two-dimensional. Therefore, the statistics of the conver-

gence field, κ , can be captured by a two-dimensional angular power spectrum, Cκκ ,

which is defined through
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Figure 1.4: Spatial maps showing convergence (left panel) and the associated shear field
(right panel) over a two-dimensional plane. On the left, the lighter orange
regions represent areas with large convergence, while the dark regions represent
areas with small values of convergence, i.e. less matter along the line of sight.
On the right, the lines of the vector field represent the average direction and
magnitude of the observed shear which correlates to the convergence shown on
the left panel. Figure based on White & Hu (2000).

⟨κ̃(i)(ℓℓℓ,χ)κ̃( j)∗(ℓℓℓ′,χ)⟩= (2π)2
δ
(2)
D (ℓℓℓ− ℓℓℓ′)C(i j)

κκ (|ℓℓℓ|), (1.89)

where ℓℓℓ is the two-dimensional wavevector, δ
(2)
D is the two-dimensional Dirac delta

function and κ̃(i)(ℓℓℓ) is the two-dimensional Fourier transform of κ(i)(ΣΣΣ) defined by

κ̃
(i)(ℓℓℓ,χ) =

∫
d2

ΣΣΣκ
(i)(ΣΣΣ)e−iℓℓℓ·ΣΣΣ

=
∫

∞

0
dχW (i)

κ (χ)
∫

d2
ΣΣΣδ

(i)(ΣΣΣ,χ)e−iℓℓℓ·ΣΣΣ,
(1.90)

where W (i)
κ (χ) ≡ 3H2

0 Ωm
2 fk(χ)g(i)(χ)/a(χ) and δ (i)(ΣΣΣ,χ) is the three-dimensional

overdensity field as defined in Equation (1.45). Substituting Equation (1.90) into

Equation (1.89), while replacing δ (i) with its Fourier transform, δ̃ (i) using Equa-

tion (1.52), and using Equation (1.61), one finds that
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C(i j)
κκ (ℓ) =

∫
∞

0
dχW (i)

κ (χ)
∫

∞

0
dχ

′W ( j)
κ (χ ′)∫

dk k2Pδ (k,χ,χ
′)

jℓ(kχ)

[k fk(χ)]2
jℓ(kχ ′)

[k fk(χ ′)]2
,

(1.91)

where jℓ is the ℓth spherical Bessel function and Pδ (k,χ,χ ′) is the unequal-time

three-dimensional power spectrum (i.e. the power spectrum between matter fields

at different look-back times/comoving distances from the observer) which is com-

monly approximated taking the geometric mean of the matter power spectrum at

each time as (Castro et al., 2005; Kitching & Heavens, 2017),

Pδ (k,χ,χ
′)≈

√
Pδ (k,χ)Pδ (k,χ ′). (1.92)

In addition, there is the so-called Limber approximation (Limber, 1953; Kaiser,

1992) which consists in a Taylor expansion around the approximate maximum of

the Bessel function at k fk(χ) = ℓ+ 1/2, and only considering the first-order term.

In this case, Equation (1.91) reduces to

C(i j)
κκ (ℓ)≈

∫
∞

0

dχ

f 2
k (χ)

W (i)
κ (χ)W ( j)

κ (χ)Pδ

(
ℓ+1/2
fk(χ)

,χ

)
. (1.93)

As can be seen from Equation (1.93), the Limber approximation reduces the

number of integrals needed from three in Equation (1.91) to one, while making the

Bessel function in Equation (1.91) vanish which are highly oscillatory and numeri-

cally expensive to integrate. At the same time, Limber approximation has proven to

be accurate for cosmic shear particularly for large ℓ. Still, the bias in the signal due

to the Limber approximation for ℓ < 40 is < 1% (Kitching et al., 2017; Lemos et al.,

2017). To get the cosmic shear angular power spectrum, C(i j)
GG (ℓ), on the curved sky,

we simply take (Lemos et al., 2017),

C(i j)
GG (ℓ) =

(ℓ+2)!
(ℓ−2)!

1
ℓ2(ℓ+1)2C(i j)

κκ (ℓ), (1.94)

where ! indicates the factorial.

When constraining cosmological parameters using weak gravitational lensing,
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the signal from two-point statistics given by Equation (1.94) is degenerate for cer-

tain combinations of σ8 (as defined in Equation (1.63)) and Ωm. To account for this

when reporting cosmological results from weak gravitational lensing, it is common

to use the following reparametrisation given by

S8 ≡ σ8

√
Ωm

0.3
. (1.95)

When conducting a (photometric) weak gravitational lensing survey, the

shapes, photometric redshifts and positions of galaxies are measured. The shapes

of the galaxies can be measured using parametric fitting or free-form algorithms.

Either methodology requires corrections for instrumental biases in the shapes due

to the point-spread function of the telescope, charge-transfer inefficiencies in the

charged-coupled device (CCD), etc. (see Heymans et al. 2006; Massey et al. 2007;

Miller et al. 2007; Kitching et al. 2010 for details on shape calibration). After ob-

taining shape measurements from images and applying the necessary corrections,

the resulting galaxy ellipticity, ε , is an estimator of the galaxy’s reduced shear ap-

plied to the intrinsic galaxy ellipticities, i.e. ε = ε1 + iε2 = γ̂ + ε̂int. In addition,

the photometric redshifts are estimated from multiband photometry. This can be

achieved with a plethora of algorithms, but they are always based on calibrating the

algorithm with a spectroscopic reference sample (see e.g. Lima et al. 2008; Wright

et al. 2020a). Depending on the photometric redshift estimate, the source galaxies

are binned in a given tomographic redshift bin i. With these measurements made,

the data is commonly compressed into a two-point correlation function over galaxy

pairs, α and β , as a summary statistic defined as

ξ̂
(i j)
εε,±(θ) =

∑α∈i,β∈ j wαwβ [ε
(i)
1 (θθθ α)ε

( j)
1 (θθθ β )± ε

(i)
2 (θθθ α)ε

( j)
2 (θθθ β )]

∑α∈i,β∈ j wαwβ

, (1.96)

where wα is the galaxy weight for a galaxy α , which accounts for selection effects

and systematic biases, and ξ̂
(i j)
εε,±(θ) is the estimated spatial two-point correlation

function as a function of the angular separation, θ between a given galaxy pair



1.3. Galaxy Surveys as Probes of Large-Scale Structure 89

from tomographic bins i and j. Note that Equation (1.96) does not consider any

systematic effects which may shift or scale the measured ellipticities. ξ̂
(i j)
εε,+ gives

the correlation between the shapes as a function of separation, while ξ̂
(i j)
εε,− yields the

anti-correlation between the shapes. Since the measured ε also includes the intrinsic

galaxy ellipticities, this induces auto-correlations in the galaxy shapes when i = j

known as the shape noise. To account for this, one can subtract the shape noise from

the autocorrelations as follows (Schneider et al., 2002),

⟨ε(i)1 (θθθ α)ε
( j)
1 (θθθ β )+ ε

(i)
2 (θθθ α)ε

( j)
2 (θθθ β )⟩= ξ̂

(i j)
γγ,+(θ)+δi jσ

(i)2
ε , (1.97)

where δi j is the Kronecker delta and σ
(i)
ε is the shape noise due to the galaxies’

intrinsic ellipticities as given by

σ
(i)2
ε ≡

∑α∈i w2
α

[
ε
(i)2
1 + ε

(i)2
2

]
∑α∈i w2

α

. (1.98)

ξ̂
(i j)
γγ,±(θ) can be related to the curl-free weak lensing angular power spectrum,

Ĉ(i j)
γγ by performing an inverse Hankel transform as follows

Ĉ(i j)
γγ (ℓ) = 2π

∫
∞

0
dθ θ ξ+(θ)J0(ℓθ) = 2π

∫
∞

0
dθ θ ξ−(θ)J4(ℓθ), (1.99)

where J0(ℓθ) and J4(ℓθ) are the zeroth and fourth order Bessel functions, respec-

tively.

To relate the weak lensing angular power spectrum, Ĉ(i j)
γγ (ℓ), to the cosmic

shear angular power spectrum, C(i j)
GG (ℓ), one must take into consideration that cos-

mic shear is not the only physical effect which may coherently shear galaxy shapes

as a function of scale. There is also the phenomenon of intrinsic alignments (IAs).

IAs can be thought of as occurring in galaxies which formed under the influence of

the same tidal fields such that their orientation and shape may be intrinsically cor-

related at certain scales (see e.g. Troxel & Ishak 2015 for a review). This effect can
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be degenerate with cosmic shear and contributes to the weak gravitational lensing

signal as follows

Ĉ(i j)
γγ (ℓ) =C(i j)

GG (ℓ)+C(i j)
II (ℓ)+C(i j)

GI (ℓ)+C(i j)
IG (ℓ), (1.100)

where C(i j)
II (ℓ) is the angular power spectrum of the intrinsic alignment perturba-

tions with themselves, while C(i j)
GI (ℓ) and C(i j)

IG (ℓ) are the angular power spectra of

the intrinsic alignments perturbations correlated with the shear field. These sum-

mary statistics of the intrinsic alignment are typically modelled parametrically as a

function of the underlying matter power spectrum. An example of such a model is

the non-linear alignment model (Hirata & Seljak, 2004) which is discussed in more

detail in Chapters 2 and 3.

1.3.3 Galaxy-Galaxy Lensing

In the weak gravitational lensing regime described in Section 1.3.2, the foreground

density inhomogeneity which leads to a lensing potential does not necessarily have

to be limited to large-scale structure in δ . Galaxies in the foreground (and the dark

matter around them) may lens background source galaxies at higher redshifts in the

same way; a phenomenon which is known as galaxy-galaxy lensing (GGL). This

effect causes the observed shapes of distant source galaxies to correlate with the po-

sitions of observed galaxies in the foreground along the line of sight (Tyson et al.,

1984; Brainerd et al., 1996; Fischer et al., 2000). As the foreground galaxies (of-

ten called lenses) also generally trace the overdensities due to large-scale structure

in the Universe, the observed signal from galaxy-galaxy lensing is also a power-

ful cosmological probe in combination with galaxy clustering and galaxy-galaxy

lensing.

Galaxy-galaxy lensing can be observed through the tangential shear, γ+, of

background sources relative to the line between the lens galaxy and the source

galaxy. For a given source-lens pair, this is defined as

γ+ ≡−Re(γe−2iφ ), (1.101)
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where γ is the shear measured on the source and φ is the angular position of the

source galaxy with respect to the horizontal axis centred at the lens.

Over many source-lens pairs, one can define the average tangential shear, γ+,

which depends on cosmology as follows

γ
(i j)
+ (θ)≡ ⟨γ(i j)

+ (θ)⟩= 1
2π

∫
∞

0
dℓℓC(i j)

gκ (ℓ)J2(ℓθ), (1.102)

where C(i j)
gκ (ℓ) is the galaxy-shear angular power spectrum for lens bin, i, and source

bin, j, which in the Limber approximation is given by

C(i j)
gκ (ℓ)≈

∫
∞

0

dχ

f 2
k (χ)

W (i)
g

(
ℓ+1/2
fk(χ)

,χ

)
W ( j)

κ (χ)Pδ

(
ℓ+1/2
fk(χ)

)
, (1.103)

where W (i)
g (k,χ) is the geometric weight function for galaxy clustering of the lens

sample, i, given by

W (i)
g (k,χ)≡ b(i)(k)p(i)(χ), (1.104)

where b(i)(k) is the galaxy bias as defined in Equation (1.65) and p(i)(χ) is the

distribution of lens galaxies along the line of sight within galaxy population, i. The

galaxy bias, b(i)(k), is often assumed to be approximately scale-independent such

that b(i)(k)≈ b(i), particularly, in the linear regime, but other approaches to induce

scale-dependence exist (see e.g. Pen 1998; Baldauf et al. 2010).

To measure the galaxy-galaxy lensing signal between a lens sample of galaxies

and a source sample, one needs the following measurements: the galaxy position

measurements of a lens sample as described in Section 1.3.1 including their red-

shifts, the shape measurements of the galaxies in the source sample as described in

Section 1.3.2, and the associated redshifts of each source. Firstly, as before, we bin

the lens galaxies into redshift bins, i, and the source galaxies into redshift bins, j.

Then, we may define the estimator for the tangential shear as follows
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γ̂
(i j)
+ (θ) =

∑α,β w(i j)
(αβ )

γ
(i j)
+,(αβ )

(θ)

∑α,β w(i j)
(αβ )

, (1.105)

where w(i j)
(αβ )

is the weight for the pair of lens, α , and source, β , in the lens redshift

bin, i, and the source redshift bin, j, respectively, and γ+ is the tangential shear for

the associated galaxy pair. Additionally, it is common to the define observed excess

surface density profile or density contrast, ∆̂Σ(θ), as follows (Bartelmann, 1995),

∆̂Σ
(i j)

(θ)≡ Σ̂
(i j)

(< θ)− Σ̂
(i j)

(θ) = γ̂
(i j)
+ (θ)Σ

(i j)
crit , (1.106)

where Σ̂(< θ) and Σ̂(θ) are the azimuthally averaged projected surface density

distributions within a disk and within a ring of angular distance θ , respectively, and

Σcrit is the critical surface density given by

Σcrit =
1

4πG
dOS

dOL dLS
, (1.107)

where dOS, dOL and dLS are the observer-source, observer-lens plane, and lens

plane-source angular diameter distances, respectively. ∆̂Σ(θ) as an estimator has

the advantage that it includes a correction to the lensing boost which makes the

response of the data vector with cosmology easier to observe.

From γ̂+(θ), we can get the observed position-shape angular power spectrum

Ĉ(i j)
nε , performing a Hankel transform as follows

Ĉ(i j)
nε =−2π

∫
∞

0
dθ θ γ̂

(i j)
+ (θ)J2(ℓθ). (1.108)

To relate the observed position-shape angular power spectrum, C(i j)
nε (ℓ), to the

underlying galaxy-shear angular power spectrum, C(i j)
gκ (ℓ), we must take into con-

sideration the main systematics which affect the lens clustering and the weak lens-

ing of the sources. As is the case for the galaxy clustering signal described in

Section 1.3.1, magnification of the foreground lenses is a considerable systematic.

At the same time, as with the cosmic shear signal discussed in Section 1.3.2, intrin-

sic alignments of source galaxies which are physically close enough to foreground
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lenses to have a considerable correlation between their shapes and positions, respec-

tively. Hence, the observed signal can be understood as

Ĉ(i j)
nε (ℓ) =C(i j)

gκ (ℓ)+C(i j)
gI (ℓ)+C(i j)

mG(ℓ), (1.109)

where C(i j)
gI (ℓ) is the correlation between the intrinsic alignments in the observed

source galaxy shapes and the positions of the lenses, and C(i j)
mG(ℓ) is the correlation

of the magnification of the lenses and the shear of the background sources. Both

quantities are discussed in more detail in Chapter 2.

1.3.4 The State-of-the-Art in Cosmology and Future Outlook

In recent years and decades, the field of cosmology has made large strides in ad-

vancing our understanding of the Universe at its largest scales, theoretically and

observationally. Yet, many open questions still remain.

In the last few years, two particular questions have come to the forefront of at-

tention in observational cosmology: the H0 tension and the σ8 tension/discrepancy.

The former refers to the observed disagreement between late-Universe and early-

Universe measurements of the Hubble constant, H0, as defined in Equation (1.15).

In the late Universe, the most recent observations of Type Ia supernovae are con-

sistent with H0 = (73.04± 1.04) km s−1 Mpc−1 (Riess et al., 2022). In the early

Universe, the most recent observations of the cosmic microwave background im-

ply H0 = (67.4± 0.5) km s−1 Mpc−1 (Planck Collaboration et al., 2020). These

measurements are discrepant with a statistical significance in excess of 5σ which

implies a tension which only has a one in 35 million chance of being due to random

noise. Currently, it is unclear whether this tension is caused by unaccounted sys-

tematics or whether it is a sign of inconsistencies within the ΛCDM model. Akin to

this tension, another discrepancy between late and early Universe probes has been

observed in the estimates of the σ8 parameter (as defined in Equation (1.63)).

The σ8 parameter is measured by large-scale structure probes, as it is an ana-

log for the amplitude of the primordial matter power spectrum, As. As described in

Section 1.3, galaxy surveys can put constraints on σ8 as seen at low redshifts and
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small scales through probing the matter power spectrum (see Sections 1.2.3.1 and

1.2.4). As shown in Figure 1.5, observations of the cosmic microwave background

can also probe the matter power spectrum, but at higher redshifts and larger scales.

Figure 1.6 shows the most recent constraints on the cosmological parameters which

govern large-scale structure: Ωm and σ8. It also shows the inferred values of the S8

parameter, given by Equation (1.95), because cosmic shear surveys are not sensi-

tive to Ωm or σ8 in their own right, but rather to S8. The galaxy surveys shown in

Figure 1.6 are the three currently ongoing cosmic shear surveys: the Kilo-Degree

Survey (KiDS), the Dark Energy Survey (DES) and the Hyper Suprime-Cam (HSC)

survey. The top panel compares the constraints from the CMB to the constrains from

cosmic shear (see Section 1.3.2) alone, while the bottom panel compares the same

CMB constraints to the posterior contours from 3x2pt analysis (a combination of

cosmic shear, galaxy clustering and galaxy-galaxy lensing measurements). It be-

comes apparent from Figure 1.6, that all current cosmic shear surveys observe a

value of S8 ≈ 0.75 which is consistently lower by a margin of ∼ 2σ than the values

of measured from CMB observations, e.g. S8 = 0.832± 0.013 from Planck Col-

laboration et al. (2020). Although the discrepancy between each individual galaxy

survey constraint and the CMB constraints has a 5% chance of being caused by

random noise, the fact that KiDS, DES and HSC all roughly agree on the discrep-

ancy despite using different methodologies and galaxy measurements might be an

indication of a possible physical tension in S8 and σ8.

The veracity of this possible tension might be addressed in the near future by

upcoming galaxy surveys. Ongoing and future CMB surveys, such as the ground-

based ACT (Thornton et al., 2016; Madhavacheril et al., 2023; Qu et al., 2023),

CMB-Stage 4 (Abazajian et al., 2016) and the Simons Observatory (Ade et al.,

2019), and the space-based LiteBIRD (Matsumura et al., 2014), will further improve

the cosmological constraints from the early Universe. In tandem, Euclid (Laureijs

et al., 2011), Rubin (LSST Science Collaboration et al., 2009) and Roman (Spergel

et al., 2015), will surmount the previous constraints on S8, as these surveys will be

wider, deeper and more precise. However, wider and deeper observations of cos-
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Figure 1.5: Overview of the scale/wavenumber, k, and redshift, z, dependence of the main
observational probes of large-scale structure: the cosmic microwave back-
ground plus the gravitational lensing thereof (in brown with a solid outline),
galaxy clustering (in orange with a dashed outline), cosmic shear (in blue with a
dotted outline), and the Lyman-α forest (in red with a dot-dashed outline). Note
that the edges of these intervals are not fixed, and they depend on the depth and
precision of a given experiment. The limits of the CMB+Lensing observations
are based on Planck Collaboration et al. (2020), the limits for galaxy clustering
are based on eBOSS (Alam et al., 2021), the limits of cosmic shear are based
on KiDS-1000, DES-Y3 and HSC-Y3 (Asgari et al., 2021; Amon et al., 2022;
Li et al., 2023), and the limits for the Lyman-α forest measurements are also
based on eBOSS (Alam et al., 2021). Figure made by the author.

mic shear, galaxy clustering and galaxy-galaxy lensing will make the modelling of

the signal more challenging as non-linearities and observational systematics are no

longer masked by random noise. This thesis aims to address this need by showcas-

ing methods to model such systematics (see Chapters 2 and 3) and demonstrating

the implementation of novel inference techniques which accurately propagate mea-

surement uncertainties to cosmological parameter estimates even when the physical

and systematic models can no longer be computed analytically (see Chapter 3).
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Figure 1.6: Posterior contours of the most recent cosmological constraints from galaxy sur-
veys compared to constraints from the cosmic microwave background. The top
figure only shows the cosmic shear results, while the bottom figure shows re-
sults from 3x2pt analysis (cosmic shear + galaxy clustering + galaxy-galaxy
lensing). The Kilo-Degree Survey results (Asgari et al., 2021; Heymans et al.,
2021) are shown with the red dot-dashed contours, the Dark Energy Survey
results (Amon et al., 2022; Abbott et al., 2022) are given by the green dotted
contours and the Hyper-Suprime Cam survey results (Li et al., 2023; Miyatake
et al., 2023) are in blue solid contours. As a reference, the dashed orange
contour shows the cosmological constraints from the cosmic microwave back-
ground as observed by the ESA Planck space telescope (Planck Collaboration
et al., 2020). Figures from Li et al. (2023) and Miyatake et al. (2023).
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1.4 Statistical Inference

In Sections 1.1 and 1.2, I have presented ΛCDM and its predictions for large-scale

structure. From ΛCDM a set of free parameters, ΘΘΘ, emerges which completely de-

fines a ΛCDM cosmology: the Hubble constant, H0, the energy density parameters

of each of the Universe’s ingredients, Ωc, Ωb, ΩΛ, Ωγ and Ων , the amplitude of

the primordial power spectrum, As, and the scalar spectral index of the primordial

power spectrum, ns. As described in Section 1.3, variations in these cosmological

parameters cause measureable changes in the observables seen by galaxy surveys.

Hence, when one makes measurements of such observables, one can infer a set of

cosmological parameters which is most consistent with these observations. The rig-

orous study of this procedure while taking into consideration any uncertainties on

the measurements is known as statistical inference.

1.4.1 Bayesian Inference

When conducting statistical inference, one can make a choice between two different

philosophies: frequentist probability and Bayesian probability. The former assumes

a notion of probability which is given by “the number of times the event occurs over

the total number of trials, in the limit of an infinite series of equiprobable repeti-

tions”, while Bayesian statistics takes the view that probability is the “measure of

the degree of belief about a proposition” (Trotta, 2008). Although both are valid

in their own contexts, it can be shown that, in the presence of uncertainty, which

is the case for cosmological observations of the Universe, Bayesian statistics is a

generalisation of Boolean logic (Jaynes, 2003). As this thesis is concerned with

uncertain observations from galaxy surveys which cannot be repeated for different

sets of cosmological parameters as we only have access to one Universe, all cos-

mological inference is conducted in a Bayesian manner (see e.g. Jaynes 2003 for a

detailed review).

The basis of Bayesian inference is Bayes’ theorem which is given by

P(ΘΘΘ|ddd,H) =
P(ddd|ΘΘΘ,H)P(ΘΘΘ|H)

P(ddd|H)
, (1.110)
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where P(ΘΘΘ|ddd,H) is the posterior probability as a function of the parameters, ΘΘΘ,

given some observations, ddd, and a model/hypothesis, H; P(ddd|ΘΘΘ,H)≡ L(ddd|ΘΘΘ,H) is

known as the likelihood which is defined as the probability of observing a data vec-

tor, ddd, given a set of parameters, ΘΘΘ, within the hypothesis/model, H; P(ΘΘΘ|H), the

prior, is the probability of parameters, ΘΘΘ, given a model and any external informa-

tion known prior to the observations; and P(ddd|H) is the marginal evidence which

normalises the posterior probability.

As a consequence of Bayes’ theorem, any observation yields a result which is

a posterior probability distribution that is an update of our prior information based

on the likelihood distribution obtained from the measured data. This often requires

one to assume the form of the log-likelihood distribution, L (ddd|ΘΘΘ), which is usually

assumed to be Gaussian given by

L (ddd|ΘΘΘ)≡ ln(L(ddd|ΘΘΘ)) =−1
2

|ddd|
∑
α

|ddd|
∑
β

[dα − tα(ΘΘΘ)]
(
Cαβ

)−1
[dβ − tβ (ΘΘΘ)], (1.111)

where dα is an element of the observed data vector, ddd, tα(ΘΘΘ) is the associated

expected data vector for a given set of parameters ΘΘΘ in the model, and C−1
αβ

is the

inverse of the covariance matrix of the data which characterises the uncertainty on

the data. Although the assumption of a Gaussian likelihood is common and often

a good approximation to analytically intractable likelihoods, it is not always valid,

even for two-point statistics in cosmic shear (Sellentin et al., 2018). In Section 1.4.3,

I discuss in detail how the assumption of a Gaussian likelihood may be dropped and

in Chapter 3 I present the first implementation of such an analysis on cosmic shear

data.

1.4.2 Data Compression

When conducting statistical inference in cosmology, it is often the case that the

measured data vector, ddd, has a high dimensionality, even upon compression into

summary statistics such as two-point correlation functions. Therefore, it can be

computationally expensive to sample the likelihood if the data vector is too large.
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In such cases, it is common to compress the data vector to an even lower dimension-

ality, while conserving as much information to constrain the cosmological model as

possible. To measure the information, we can define the Fisher information matrix,

Fi j, as

Fi j(ddd∗,ΘΘΘ∗) =−
〈

∂ 2L (ddd∗|ΘΘΘ∗)
∂θi ∂θ j

〉
, (1.112)

where θi,θ j ∈ ΘΘΘ and ΘΘΘ∗ is a fiducial set of cosmological parameters.

There exist many different compression schemes which reduce the dimension-

ality of a data vector while mostly conserving the Fisher information, Fi j(ddd∗,ΘΘΘ∗).

For example, principal component analysis (Pearson, 1901) where the inverse of

the covariance matrix which constructs the likelihood is decomposed into its eigen-

values and eigenvectors, and only a fraction of the eigenvectors with the largest

eigenvalues are not discarded, as they contain most of the Fisher information. A

more sophisticated method for Gaussian likelihoods is the Massively Optimised Pa-

rameter Estimation and Data compression (Heavens et al., 2000b) which linearly

compresses ddd down to the dimensionality of ΘΘΘ, if the noise on ddd is independent

of ΘΘΘ. In this thesis, we use a generalisation of this scheme called score compres-

sion (Alsing & Wandelt, 2018) which only assumes that the likelihood is approx-

imately Gaussian near the maximum (which is known to be the case for cosmic

shear, Sellentin et al. 2018). To apply score compression, we Taylor-expand the

log-likelihood, L , up to the second order around the fiducial set of parameters, ΘΘΘ∗,

as follows

L (ΘΘΘ∗+δδδΘΘΘ)≈ L (ΘΘΘ∗)+δδδΘΘΘ
T

∇∇∇L (ΘΘΘ∗)−
1
2

δδδΘΘΘ
T

∇∇∇∇∇∇
TL (ΘΘΘ∗)δδδΘΘΘ, (1.113)

where δδδΘΘΘ is a small variation in the cosmological parameter vector near the fiducial

value. The term ∇∇∇L (ΘΘΘ∗) necessarily has the same dimensionality as ΘΘΘ, so it can

be viewed as a natural compression scheme which reduces the dimensionality of the

data vector down to |ΘΘΘ|. Therefore, it defines the score function as sss ≡ ∇∇∇L which
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when evaluated at the fiducial cosmology gives the compressed data vector, ttt, as

ttt ≡ ∇∇∇L∗. (1.114)

1.4.3 Simulation-Based Inference

The assumption of a Gaussian likelihood as given in Equation (1.111) may not

always hold. This may be due to non-Gaussian noise being inherent to a given

summary statistic/measurement or due to the observations being biased by a sys-

tematic effect which induces non-Gaussian noise. To make sure that in such cases

the assumption of a Gaussian likelihood is not biasing the inference as the non-

Gaussian likelihood for some applications is unknown, it can be of interest to drop

this assumption through the use of Simulation-Based Inference (SBI), also known

as Likelihood-Free Inference or Implicit Likelihood Inference. SBI makes use of

the fact that the posterior distribution is not only proportional to the likelihood, but

also to the joint probability distribution of the data and the parameters of interest,

P(ΘΘΘ,ddd|H), such that

P(ΘΘΘ|ddd,H) ∝ P(ΘΘΘ,ddd|H)P(ΘΘΘ|H). (1.115)

This implies that if one can define a mapping from parameters, ΘΘΘ, to the as-

sociated data vector, ddd, given a model, H, with a suite of forward-simulations (see

Section 1.4.3.1), then one can numerically characterise the joint probability distri-

bution, P(ΘΘΘ,ddd|H), and directly evaluate the posterior distribution. Traditionally,

this could be achieved through Approximate Bayesian Computation (Rubin, 1984;

Pritchard et al., 1999; Beaumont, 2019) which rejects/accepts forward-simulations

which contribute to the joint probability distribution according to their distance

from the observed data vector. However, in this thesis, I opt for Density Estimation

Likelihood-Free Inference (DELFI), as it has been shown to be more computation-

ally effective, while also discarding less information (Alsing et al., 2019), which I

discuss in detail in Section 1.4.3.2 and apply to cosmic shear data in Chapter 3.
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1.4.3.1 Statistical Simulations

As alluded to in Section 1.2.4, it is necessary to create numerical simulations of

large-scale structure under ΛCDM if one wishes to capture the maximal complex-

ity of structure formation, particularly, in the non-linear regime. An accurate yet

computationally expensive approach is the use of N-body and hydrodynamical sim-

ulations. N-body simulations simulate the evolution of many rigid and massive

bodies evolving under the influence of gravity alone, while hydrodynamical simu-

lations simulate the contents of the Universe as fluids, while also including the ef-

fects of electromagnetic interactions, star formation or the exchange of intergalactic

gas (see e.g. Dolag et al. 2008; Nagamine 2018 for a review of such simulations).

Such simulations require a prohibitively large amount of computational resources

that it is unfeasible to obtain enough forward-simulations at different cosmologi-

cal parameter values such that a prior volume in parameter space can be sampled

extensively. This means that it is currently impractical to use N-body simulations

or hydrodynamical simulations in order to conduct SBI from large-scale structure

observables.

As a computationally effective but less accurate alternative, in this thesis, I

develop a suite of statistical simulations of large-scale structure with the aim of

forward-modelling galaxy survey observables, such as cosmic shear, galaxy clus-

tering and galaxy-galaxy lensing, for a given set of cosmological parameters (see

Section 3). Rather than simulating individual particles or fluids evolving within a

ΛCDM Universe, statistical simulations directly simulate the statistical properties

of the matter fields at different snapshots during the cosmic evolution of the Uni-

verse. The simplest form of such a statistical simulation of the matter overdensity,

δ , is a Gaussian random field. These fields are exclusively defined by their mean

and variance at every point in space, which can be randomly sampled in order to

evaluate a specific instance of such a Gaussian random field, δG. However, Gaus-

sian fields do not capture the full complexity of large-scale structure as by definition

they have zero skewness or kurtosis or beyond. Realistic matter overdensity fields

have higher-order variations as filamentary structure and voids tend to appear under
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the influence of gravity and baryonic effects, even if the seeds that originated the

overdensities were distributed in a Gaussian fashion. It has been found that a good

approximation to such fields is a log-normally distributed random field, δlog, which

can be derived from a Gaussian random field. In fact, log-normal fields are even

able to produce reasonable approximations to the three-point and four-point statis-

tics measured from N-body simulations (Hall & Taylor, 2022; Piras et al., 2023).

For this reason, log-normal random fields are a common approximation used for

matter overdensity fields (Coles & Jones, 1991; Böhm et al., 2017; Abramo et al.,

2016, 2022) as well as for convergence fields (Hilbert et al., 2011; Clerkin et al.,

2017; Giocoli et al., 2017; Gatti et al., 2020).

To motivate the use of log-normal fields, it is helpful to note that primordial

density fluctuations (see Section 1.2.1) occur due to random quantum fluctuations

which are independent from each other. In the limit of a large number of random

variations, due to the central limit theorem, the primordial density field is thought

to be described by a Gaussian random field (Guth & Pi, 1982; Bardeen et al., 1983;

Brandenberger, 1985; Barrow & Coles, 1990). As these fluctuations continue to

evolve according to gravity and baryonic effects in a non-linear fashion, the matter

density field deviates from Gaussianity. The simplest model for such fields arises

when considering the central limit theorem for a random field of non-linear noise,

where each random independent variation is multiplied with all others, rather than

being linearly superposed (Coles & Jones, 1991). It can be shown that such non-

linear noise produces a random field, which in its central limit, is described by a log-

normal distribution (Aitchison & Brown, 1969). Besides this fact, log-normal dis-

tributions are motivated directly by perturbation theory (see Section 1.2.2). When

considering the continuity equation for a small density perturbation as shown in

Equation (1.43), it can be re-expressed as follows (Coles & Jones, 1991),

1
ρa3

d(ρa3)

dτ
=−∇ΣΣΣ ·uuu, (1.116)

where τ is the conformal time such that adτ = dt. Upon inspection of Equa-

tion (1.116), one finds that if the initial peculiar velocity field, uuu, is Gaussian, ∇ΣΣΣ ·uuu
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is also Gaussian, and it will remain Gaussian as it linearly evolves with τ . In this

case, given that the solution to Equation (1.116) gives that ρ ∝ exp(−∇ΣΣΣ · uuu), the

density field, ρ , is given by a log-normal field. This implies that, in the weak non-

linear regime (see Section 1.2.4), a log-normal field describes the kinematics of

large-scale structure in accordance with the continuity equation. Of course, such

a description also has its limitations: as it cannot take into consideration three-

dimensional topology of supergalactic gas clouds in the velocity field, Zel’dovich

pancaking (Zel’dovich, 1970) cannot be reproduced by log-normal fields.

Additionally, it has also been observed empirically that the distribution of

galaxies is approximately log-normal (Hubble, 1934; Coles & Jones, 1991; Wild

et al., 2005), which makes log-normal fields a sufficiently good model for galaxy

clustering. Although this could be driven by non-linear galaxy bias, it has also been

found that log-normal distributions (with some generalisations) are a reasonable ap-

proximation for the weak lensing convergence fields in N-body simulations (Taruya

et al., 2002; Hilbert et al., 2011; Das & Ostriker, 2006; Joachimi et al., 2011b; Taka-

hashi et al., 2011; Hall & Taylor, 2022; Piras et al., 2023). This has been empirically

confirmed as well in Clerkin et al. (2017) where it was found that log-normal fields

accurately describe the weak lensing convergence between scales of 3 to 10 Mpc,

which are the scales typically probed by weak lensing surveys.

For log-normal random fields to capture the statistics of a matter overdensity

field at a given cosmology, we can set its power spectrum based on the matter power

spectrum as described by ΛCDM in Section 1.2. For simplicity, it is convenient to

project the matter field into a shell which is discrete along the line of sight and

covers the whole sky in the angular directions, θθθ , such that

⟨δ (i)
log(θθθ 1)δ

( j)
log (θθθ 2)⟩=C(i j)

δδ
(θ = |θθθ 1 −θθθ 2|), (1.117)

where C(i j)
δδ

(θ) is the two-dimensional two-point correlation function of the log-

normal random field in real-space which is given by
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C(i j)
δδ

(θ) =
∞

∑
ℓ=0

ℓ+1
4π

C(i j)
δδ

(ℓ)Pℓ(cosθ), (1.118)

where Pℓ is the Legendre polynomial of ℓth order and C(i j)
δδ

(ℓ) is the angular mat-

ter power spectrum given by the projection of the three-dimensional matter power

spectrum into the discrete shell along the line of sight (see Chapter 3) for more

details.

In practice, it is not simple to sample a log-normal random field from C(i j)
δδ

(θ)

directly, so it is more convenient to sample a Gaussian random field first, which is

defined by

⟨δ (i)
G (θθθ 1)δ

( j)
G (θθθ 2)⟩= G(i j)

δδ
(θ = |θθθ 1 −θθθ 2|), (1.119)

where G(i j)
δδ

(θ) is the two-dimensional power spectrum of the Gaussian random field

in real-space. This can then be transformed into a log-normal random field through

the following transformation (Coles & Jones, 1991; Kayo et al., 2001; Hilbert et al.,

2011; Xavier et al., 2016; Tessore et al., 2023),

G(i j)
δδ

(θ) = ln
[

1+
C(i j)

δδ
(θ)

α(i)α( j)

]
, (1.120)

where α(i) = ⟨δ (i)
log(θθθ)⟩+λ and α( j) = ⟨δ ( j)

log (θθθ)⟩+λ , and λ is the shift of the log-

normal distribution, which is typically λ = 1 for matter overdensity fields to ensure

that δlog = 0 and δG = 0 happen at the same point θθθ . The Gaussian two-dimensional

power spectrum can be expressed as an angular power spectrum through

G(i j)
δδ

(ℓ) = 2π

∫ 2π

0
dθ G(i j)

δδ
(θ)Pℓ(cosθ)sin(θ). (1.121)

Once the Gaussian random field, δG, has been sampled from G(i j)
δδ

(ℓ) in ac-

cordance with the input cosmology, it can then be transformed into a log-normal

random field, δlog, using the following relation

δ
(i)
log(θθθ) = eδ

(i)
G (θθθ)−λ . (1.122)
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This allows one to efficiently create statistical simulations of log-normal ran-

dom matter fields which approximate the statistics of an N-body-simulated matter

field reasonably well. Then, one can stack a series of such fields along the line of

sight and populate the simulation with galaxies which trace the overdensities in the

field. This ensures that the cosmological dependence is encoded into the galaxy

clustering signal in the forward-simulations. Moreover, integrating the log-normal

random matter field, δlog, along the line of sight as given by Equation (1.88), we ob-

tain the convergence field, κ , along the line of sight. From this, we can compute the

shear and simulate the cosmic shear and galaxy-galaxy lensing signal in the galaxy

population. A more detailed description of this is given in Chapter 3.

1.4.3.2 Neural Density Estimation

Once a mapping from cosmological parameters, ΘΘΘ, to the compressed data vector,

ttt, has been established through a suite of forward-simulations, they can be used to

learn the effective likelihood, L(ttt|ΘΘΘ), using Density Estimation Likelihood-Free In-

ference (DELFI; Alsing et al. 2019). DELFI uses neural networks to parametrise the

effective likelihood distribution from the given parameter-data vector pairs. DELFI

can use ensembles of multiple neural network architectures, such as Mixture Den-

sity Networks (MDNs; Bishop 1994), Gaussian Masked Autoencoders for Den-

sity Estimation (MADEs; Germain et al. 2015), and Masked Autoregressive Flows

(MAFs; Papamakarios et al. 2017).

An MDN is a neural network in which the network weights, www, parametrise a

mixture density model of Gaussian distributions. Therefore, the learnt likelihood

by a given MDN, i, is given by

P(ttt|ΘΘΘ,www) =
N

∑
α

Aα(ΘΘΘ,www)G[µα(ΘΘΘ,www),Cα(ΘΘΘ,www)], (1.123)

where N is the number of Gaussian, Aα(ΘΘΘ,www) is the amplitude of each Gaussian

and G[µα(ΘΘΘ,www),Cα(ΘΘΘ,www)] is a Gaussian distribution with mean µα(ΘΘΘ,www) and co-

variance Cα(ΘΘΘ,www).

Instead, for the purposes of weak gravitational lensing observables, particu-
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larly in high-dimensional parameter spaces, MADEs and MAFs perform better.

MADEs harness the fact that any probability density distribution can be written

as a product of one-dimensional conditionals through the chain rule. This implies

that

P(ttt|ΘΘΘ,www) =
|ttt|
∏
α

P(tα |ttt1:α−1,ΘΘΘ,www). (1.124)

From this, Gaussian MADEs choose to parametrise each P(tα |ttt1:α−1,ΘΘΘ,www)

as a Gaussian distribution whose mean and variance is learnt by a neural network

which only depend on ttt1:α−1,ΘΘΘ. Through this, MADEs learn the transform of the

random variable, ttt, to a unit Gaussian, G(000, III), such that

uα =
tα −µα(ttt1:α−1,ΘΘΘ,www)

σα(ttt1:α−1,ΘΘΘ,www)
, (1.125)

where uα is the transformed variable which the MADE learns for a given element

of ttt, α , µα(ttt1:α−1,ΘΘΘ) is the learnt mean of the transformation, while σα(ttt1:α−1,ΘΘΘ)

is the learnt variance. This means that Equation (1.124) reduces to

P(ttt|ΘΘΘ,www) = G[uuu(ttt,ΘΘΘ,www)|000, III]
∣∣∣∣∣∂uuu(ttt,ΘΘΘ,www)

∂ ttt

∣∣∣∣∣
= G[uuu(ttt,ΘΘΘ,www)|000, III]

|ttt|
∏
α

σα(ttt,ΘΘΘ,www).

(1.126)

As found in Papamakarios et al. (2017) and Alsing et al. (2019), MADEs, on

their own, are sensitive to changes in the order of the factors in Equation (1.124).

Additionally, assuming only Gaussian conditional distributions may not be suitable

for some applications. For this reason, for the purposes of this thesis, it is more

useful to use MAFs which overcome these issues. Constructing a MAF involves

initiating a stack of MADEs where the output transformation uuu of one autoencoder

is taken as the input of the next MADE after being randomly reordered. Therefore,

Equation (1.124) for a MAF with NMADE MADEs becomes
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P(ttt|ΘΘΘ,www) = G[uuuβ=NMADE(ttt,ΘΘΘ,www)|000, III]
NMADE

∏
β

|ttt|
∏
α

σα β (ttt,ΘΘΘ,www), (1.127)

where uuuβ=NMADE(ttt,ΘΘΘ,www) is the output of the last MADE in the MAF.

To ensure that the learnt effective likelihood, P(ttt|ΘΘΘ,www), converges to the true

underlying likelihood distribution, DELFI optimises its neural networks based on

the following loss function

−ln[U(www)] =−
Nsims

∑
i=1

ln[P(ttt i|ΘΘΘi,www)], (1.128)

where Nsims is the number of forward-simulations and the loss function, −ln[U(www)],

is defined such that it is a Monte Carlo estimate of the Kullback-Leibler divergence

between the learnt effective likelihood and the true effective likelihood (see Alsing

et al. 2019 for a more detailed explanation). As is the case for the analysis shown

in this thesis in Chapter 3, this process is usually repeated over an ensemble of

many independent neural density estimator networks which each learn the effective

likelihood separately. The final estimate of the effective likelihood is then given by

the weighted sum of the learnt distributions from each neural density estimator.



Chapter 2

Magnification Bias in Galaxy Surveys

with Complex Sample Selection

Functions

Over the last few decades, weak gravitational lensing has become a powerful tool to

directly measure the matter distribution of the late Universe, while allowing for the

inference of the cosmological parameters which govern it. Surveys, such as the cur-

rently ongoing Kilo Degree Survey (KiDS, Kuijken et al. 2015), the Dark Energy

Survey (DES, Flaugher & DES Collaboration 2013; Dark Energy Survey Collabo-

ration et al. 2016), the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP,

Aihara et al. 2018), have become increasingly limited by systematics rather than

statistics as ever-growing sample sizes reduce uncertainties. The impact of the sys-

tematics will become even more exaggerated for the next generation of surveys,

e.g. Euclid (Laureijs et al., 2011), the Vera C. Rubin Observatory Legacy Survey

of Space and Time (LSST, LSST Science Collaboration et al. 2009), and the Nancy

Grace Roman Space Telescope (also known as WFIRST, Spergel et al. 2015). For

this reason, recent efforts have focused on improving our physical understanding of

often neglected phenomena which can influence cosmological parameter inference

based on shear and clustering measurements. These effects include intrinsic galaxy

alignments (Kiessling et al., 2015; Kirk et al., 2015; Troxel & Ishak, 2015) and mag-

nification (Hildebrandt et al., 2009; Duncan et al., 2014; Hildebrandt, 2016; Unruh



109

et al., 2020; Thiele et al., 2020). In this chapter, we will focus on the magnification

effects.

While the magnification due to gravitational lensing partially manifests itself

as a change in the angular diameter of an object, it also changes the observed solid

angle of a field with respect to the intrinsic solid angle. This can affect the observed

galaxy counts and their fluxes, leading to magnification effects, which have been

detected in the past by Chiu et al. (2016) and Garcia-Fernandez et al. (2018). It

is important to note that this affects the counts of source galaxies and lens galax-

ies, such that the magnification due to large-scale structure can also change the

shear-clustering cross-correlations (galaxy-galaxy lensing, GGL) and the clustering

measurements (Hui et al., 2007; Ziour & Hui, 2008; Duncan et al., 2014; Unruh

et al., 2020; Thiele et al., 2020). Therefore, if this effect is not accurately modelled

in such analyses, a magnification bias can be induced. However, we also note that,

in the literature and in this thesis, the term magnification bias is regularly used to

refer magnification effects even when they are modelled.

We break down the magnification effect into two separate phenomena: flux

magnification and lensing dilution. The first is caused by an increase/decrease in the

flux observed from a source due to gravitational lensing which can push otherwise

unobserved galaxies over the flux limit or push galaxies with magnitudes below

the flux limit out of the observational window. At the same time, lensing dilution

increases/decreases the number of observed sources within a certain area of the sky

by (de-)magnifying the solid angle behind the gravitational lens. The magnification

effect can be measured directly from changes in the apparent size and magnitude of

lensed galaxies (Schmidt et al., 2012) or by comparing the observed galaxy effective

radii to the intrinsic radii derived from their surface brightness and stellar velocity

dispersion (Huff & Graves, 2014). Nonetheless, it is most commonly measured

through the bias in the observed number density of sources (Scranton et al., 2005).

Since this bias directly contributes to the clustering and GGL signal, we will rely

on this approach in our analysis.

The constraining power of weak lensing samples is constantly growing (Troxel
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& Ishak, 2015; Hikage et al., 2019; Asgari et al., 2021) by including additional

measurements (Abbott et al., 2019b,a, 2022) and through joint analyses between

different surveys like, for example, in the recent joint analysis of KiDS-1000 with

BOSS (methodology described in Joachimi et al. 2021 and the results are shown in

Heymans et al. 2021 and in Tröster et al. 2021). In all these analyses, the under-

standing of the systematics is becoming a priority. One potential systematic could

appear from unaccounted magnification biases in the clustering signal of a non-

flux-limited spectroscopic surveys such as BOSS (Dawson et al., 2013) or DESI

(DESI Collaboration et al., 2016) or color-selected photometric samples such as

DES REDMAGIC (Rozo et al., 2016) or luminous red galaxy (LRG) samples (Vak-

ili et al., 2020; Fortuna et al., 2021). Thus also biasing the GGL correlations with

shear signal from weak lensing surveys.

This work aims to provide a method for estimation of the magnification bias

for surveys which have complex sample selection functions which are not purely

flux/magnitude-limited. We use the standard framework for estimating the magni-

fication bias from observables in flux-limited surveys as a basis for the parametri-

sation of a semi-empirical model for non-flux-limited surveys. This model is then

tested by comparing the estimates for the magnification bias in BOSS observations

(Dawson et al., 2013) to the estimates from MICE2 cosmological simulations. We

then use our results to forecast some of the potential biases which could be induced

in a joint analysis of KiDS-1000 or HSC Wide with BOSS and a Euclid-like survey

with a DESI-like survey.

This chapter is structured in the following manner. In Section 2.1, the theoreti-

cal background is described. In Section 2.2, we provide an outline and presentation

of our methods and simulations. The magnification bias estimates from a BOSS-like

galaxy population are presented in Section 2.3. The forecasts for current and future

joint analyses are found in Section 2.4. Lastly, we conclude the chapter and provide

an outlook in Section 2.5. Appendix A repeats the analysis shown in Section 2.3 for

a magnitude limited galaxy sample.
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2.1 Theoretical Background

2.1.1 Magnification Bias for Flux-Limited Surveys

As described in the review by Bartelmann & Schneider (2001), a lensed population

of galaxies with a cumulative galaxy count N at redshift z, given a flux limit of S,

can be described in terms of the unlensed population, N0, as

N(> S,z) =
1

µ(z)
N0

(
>

S
µ(z)

,z

)
, (2.1)

where µ(z) is the magnification for a redshift z as defined in Equation (1.87) in

Section 1.3.2. Here, the 1/µ(z) factor accounts for the dilution of galaxies due

to magnification. The unlensed population has been observationally shown to be

similar to a power law in flux (in particular, for faint galaxies) given by

N0(> S,z) = AS−α p0(z;S) , (2.2)

where A and α parametrise the power law and p0(z;S) is the redshift probability dis-

tribution of the galaxies. To contextualise such a flux distribution, let us consider the

simplest case: in Euclidean space, a sample of uniformly distributed galaxies with

density ngal which are all standard candles with the same luminosity, L = 4πr2S,

where r is the Euclidean distance between a galaxy and the observer. For a given

flux limit, this gives

N0(> S) = ngal
4
3

πr3
lim = ngal

4
3

π

(
4πS

L

)− 3
2

, (2.3)

where rlim is the distance at which the observed flux equals to the flux limit. From

Equation (2.3), we find that for this idealised case α = 1.5, so deviations in α from

this value can be regarded as deviations in the underlying galaxy population from a

uniformly distributed sample of standard candles.

Taking the ratio of these two populations, assuming that we can approximate

the µ(z) with the magnification µ of a fiducial source at infinity (which should

hold mainly at low redshifts, Bartelmann & Schneider, 2001) and integrating over
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redshift, we get the following expression:

N(> S)
N0(> S)

= µ
α−1. (2.4)

If α ≈ 1, we can see from Equation (2.4) that the magnification bias would

vanish (with slight deviations from this depending on the redshift range). The mag-

nification can be related directly to the local surface density κ in the weak lensing

limit (|κ| ≪ 1, |γ| ≪ 1) with µ ≈ 1+ 2κ (Broadhurst & Lehar, 1995). Therefore,

one can relate κ to the relative difference between the magnified and the unmagni-

fied galaxy populations and the exponent α of the flux power spectrum with

N(> S)−N0(> S)
N0(> S)

≈ 2(ακ −1)κ, (2.5)

where ακ is the same as the α in Equation (2.4) in the weak lensing limit. When

analysing samples with a complex selection function, Equation (2.5) does not nec-

essarily apply anymore. Nonetheless, we use the parameter ακ as an analogue to

estimate the magnitude of the magnification bias in a given galaxy sample.

2.1.2 Estimating the Magnification Bias in Flux-Limited Sur-

veys

By considering Equations (2.1), (2.2), and the definition of magnitude as a function

of flux, one can derive that αobs can be determined from the differential galaxy count

n(m) over a given band magnitude range from m to m+ dm as follows (Binggeli

et al., 1988; Bartelmann & Schneider, 2001; Hildebrandt et al., 2009),

αobs(m) = 2.5
dlog10[n(m)]

dm
. (2.6)

One could get the same estimates of αobs(m) (at least, for a flux-limited sample)

by replacing n(m) in Equation (2.6) with the cumulative galaxy count distribution.

However, here we choose to derive αobs(m) from the differential distribution, n(m),

instead, because we find that it gives more robust estimates when deviating from

the flux-limited case. Also, note that sometimes the differential galaxy count distri-
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bution is given over flux, S, instead of magnitude, m. Then, αobs(S)+1 is given by

−dlog10[n(S)]/dlog10(S).

This αobs near the faint end of the galaxy population is considered as an effec-

tive luminosity function slope if it is consistent with the ακ value given by Equa-

tion (2.5). Therefore, by estimating the luminosity function slope, ακ , through

the observed α , one can estimate the systematic effects that may be introduced to

galaxy number counts through the magnification bias, and therefore the systematics

affecting the clustering and GGL signals derived from this observable.

2.1.3 Signal Modelling

In accordance with the framework outlined in Section 2 of Joachimi et al. (2021)

as the methodology for the inference of cosmological parameters from KiDS-1000,

we opt to quantify the influence of the magnification bias on cosmology through

its contribution to the GGL angular power spectra. These angular power spectra

are line-of-sight projections of the three-dimensional matter power spectrum. As

shown in Section 1.3.3, we express the observable GGL angular power spectrum

correlating galaxy positions, n, and galaxy shapes, ε , as a linear functional of de-

rived statistics as

C(i j)
nε (ℓ) =C(i j)

gG (ℓ)+C(i j)
gI (ℓ)+C(i j)

mG(ℓ), (2.7)

where i is the index for lens galaxy redshift bins, j is the index of the source galaxy

samples, gG stands for the cross-correlation between the lens galaxy distribution

and the source gravitational shear, gI stands for the intrisinc alignment of source

galaxies physically close to foreground lenses and mG stands for the correlation

between gravitational shear and the lensing-induced magnification bias in the lens

sample. C(i j)
ga (ℓ) for a ∈ {G, I} are defined as Limber-approximated line-of-sight

projections of the three-dimensional cross-power spectrum between the galaxy and

matter distribution, Pgm, given by (Kaiser, 1992; LoVerde & Afshordi, 2008)

C(i j)
ga (ℓ) =

∫
χhor

0
dχ

n(i)L (χ)W ( j)
a (χ)

f 2
K(χ)

Pgm

(
ℓ+1/2
fK(χ)

,χ

)
, (2.8)
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where χ is the comoving distance, χhor is the comoving distance to the horizon, n(i)L

is the comoving distance distribution of the lens sample i and fK is the comoving

angular diameter distance. W ( j)
G is the weak lensing kernel and is given by

W ( j)
G (χ) =

3H2
0 Ωm

2
fK(χ)

a(χ)

∫
χhor

χ

dχ
′n( j)

S (χ ′)
fK(χ ′−χ)

fK(χ ′)
, (2.9)

where H0 is the Hubble constant, Ωm is the matter density parameter, c is the speed

of light, a is the scale factor and n( j)
S is the comoving distance distribution of the

source sample j. W ( j)
I is the intrinsic alignment (IA) kernel. Here, we choose an

IA kernel in accordance with the non-linear alignment model (NLA, Bridle & King

2007) given by

W ( j)
I (χ) =−AIA

C1ρcr Ωm

D(a[χ])
n( j)

S (χ), (2.10)

where AIA is the IA amplitude, zpivot is an arbitrary pivot which is set to 0.3 in

line with previous IA analyses (Joachimi et al., 2011a), C1 denotes a normalisation

constant, ρcr is the critical density, D is the linear growth factor normalized to unity

at the present day. We normalise the IA kernel by setting C1ρcr ≈ 0.0134, i.e. C1 =

5× 10−14(h2M⊙/Mpc−3)−2, in accordance with the value from Hirata & Seljak

2004 and Bridle & King 2007 which is set using the galaxy ellipticity measurements

from SuperCOSMOS (Hambly et al., 2001; Brown et al., 2002).

The magnification term in Equation (2.7) is modelled as

C(i j)
mG(ℓ) = 2(α(i)

obs −1)C(i j)
GG (ℓ), (2.11)

where i again indexes lens galaxy samples, j indexes source samples, mG stands

for the lensing-induced magnification bias in the lens sample and GG stands for

shear-shear correlation signal. C(i j)
GG (ℓ) is defined as the cosmic shear angular power

spectrum purely from gravitational lensing effects, i.e. without any intrinsic align-

ment signals, and is given by



2.2. Methodology 115

C(i j)
GG (ℓ) =

∫
χhor

0
dχ

W (i)
G (χ)W ( j)

G (χ)

f 2
K(χ)

Pδ

(
ℓ+1/2
fK(χ)

,z(χ)

)
, (2.12)

where Pm,nl is the non-linear matter power spectrum. This power spectrum is com-

puted with a non-perturbative model using HMCODE (Mead et al., 2015, 2016)

integrated within CAMB (Code for Anisotropies in the Microwave Background;

Lewis et al. 2000; Lewis & Bridle 2002; Howlett et al. 2012). HMCODE incorpo-

rates baryonic feedback in its halo modelling approach. We solely parametrise the

baryonic feedback model using one free parameter, Abary, in line with Hildebrandt

et al. (2017). The non-linear matter power spectrum Pδ is also used to compute

the cross-power spectrum between the galaxy and matter distribution Pgm used in

Equation (2.8) as in the analysis shown in Joachimi et al. (2021).

2.2 Methodology
The method outlined in this work aims to provide an accurate estimate of the ef-

fective luminosity function slope, α , of a galaxy sample with a complex sample

selection. This estimate can be used to quantify the magnification bias in clustering

and GGL lensing analyses. To achieve this, we rely on realistic weak lensing sim-

ulations to calibrate the αobs estimate from observables, based on Equation (2.6),

such that it agrees with the value of ακ derived from unobservable quantities using

Equation (2.5). The procedure gives a magnitude range that yields the most optimal

αobs value. This value is used to estimate αobs from observations. If the simulations

are accurate, αobs should agree with the underlying ακ even though it cannot be

directly measured. The code used for the analysis presented in this chapter can be

found in the MAGBET1 GitHub repository.

2.2.1 BOSS DR12 Data

We develop our method using lens samples derived from the Sloan Digital Sky Sur-

vey (SDSS)-III BOSS (Eisenstein et al., 2011; Dawson et al., 2013). BOSS is a

spectroscopic survey with a complex sample selection function which is commonly

1https://github.com/mwiet/MAGBET

https://github.com/mwiet/MAGBET
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used in cosmological analyses of galaxy clustering and GGL (Alam et al., 2017;

Sánchez et al., 2017; Beutler et al., 2017; Speagle et al., 2019; Tröster et al., 2020;

Heymans et al., 2021). For more details about the nature of the galaxy selection

process, see Alam et al. (2015). A lens galaxy sample selected in such a way could

be introducing a substantial magnification bias in any analysis, while its complex-

ity does not allow to measure it with current means. For the BOSS sample, the

bias becomes even more important to model, because it is commonly used in GGL

analysis with the source galaxy samples of weak lensing surveys whose footprint

significantly overlaps with the BOSS footprint.

For this work, we use the photometric data from the final data release of BOSS,

DR12 (Alam et al., 2015) with the same target selection as in Sánchez et al. (2017).

This sample combines the BOSS LOWZ and CMASS galaxy samples to produce a

catalogue which covers approximately 9,300 deg2 (Reid et al., 2016). Its normalised

redshift distribution can be seen in Figure 2.1. The sample is then split into two

redshift ranges: “zlow” (0.2 < z ≤ 0.5) and “zhigh” (0.5 < z ≤ 0.75). From this

photometric data, we use SDSS composite model (cmodel) band magnitudes which

are defined in Stoughton et al. (2002).

2.2.2 MICE2 Simulations

For the analysis discussed in Section 2.3 and in Appendix A, we rely on datasets of

simulated galaxies, selected from the MICE2 galaxy mock catalogue (Fosalba et al.,

2015a,b; Crocce et al., 2015; Hoffmann et al., 2015). This catalogue is based on the

MICE dark matter-only simulation, generated from 7×1010 particles in a box with

a side length of 3 Gpc and assuming a ΛCDM cosmological model with Ωm = 0.25,

ΩΛ = 0.75, Ωb = 0.044 and h = 0.7. A light cone, spanning ∼ 5,000 deg2, is con-

structed from this simulation box and populated with galaxies up to a redshift of

z = 1.4 using a hybrid Halo Occupation Distribution (HOD) and Halo Abundance

Matching (HAM) technique. Additionally, MICE2 embeds gravitational lensing by

providing estimates of the shear components, convergence as well as true and lensed

position for each galaxy. MICE2 derives weak lensing properties by constructing

all-sky shells in steps of 35 Myr of lookback time (Fosalba et al., 2015b). These
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Figure 2.1: Galaxy counts per unit area on the sky, N, for 100 redshift bins within 0< z≤ 1.
The SDSS DR12 BOSS sample is shown in black, the MICE2 sample with the
BOSS selection function in red and the flux-limited MICE2 sample in orange.
The blue area marks the domain between z = 0.2 and z ≤ 0.5 which defines the
zlow bin, while the red area marks the domain of the zhigh bin (0.5< z≤ 0.75).
The dashed black horizontal line indicates the boundary between the LOWZ
and the CMASS samples within the BOSS DR12 sample at z ∼ 0.36.

are then projected into HEALPIX maps (Górski et al., 2005) from which the conver-

gence is computed using the Born-approximation (Fosalba et al., 2015b). Therefore,

galaxies within the same HEALPIX pixel inherit the same lensing properties which

are, due to this limitation, accurate down to scales of 1 arcmin. We compute the

magnified galaxy magnitudes according to Equation (2.13) which uses the weak

lensing assumption |κ| ≪ 1 by approximating µ ≈ 1+2κ .

We start from this MICE2 input catalogue and apply an evolutionary correc-

tion to the provided SDSS g′r′i′-band magnitudes and calculate an additional set of

magnitudes

mmag = mevo −2.5log10(1+2κ) , (2.13)

that factor in magnification, where mevo are the evolution corrected MICE2 mag-
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Figure 2.2: Normalised differential galaxy count distribution, n(i), with respect to the i-
band magnitude. The BOSS sample is shown in black, the MICE2 sample in
red, while the flux-limited MICE2 sample is shown in yellow. In the top plot,
we see the population of galaxies with 0.2 < z ≤ 0.5 and at the bottom, the
population of galaxies with 0.5 < z ≤ 0.75. The black cross indicates the effec-
tive magnitude limit determined for the BOSS sample by finding the faintest
prominent peak in n(i). The red triangle indicates the same for the MICE2
mock sample.
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nitudes and κ the convergence (see van den Busch et al. 2020 for details). This

allows us later to separate the effects of lensing dilution and magnification in the

mock data. Unruh et al. 2020 recently showed that the weak lensing assumption

(|κ| ≪ 1, |γ| ≪ 1) used to derive Equation (2.5) and Equation (2.13) might lead to

biases when simulating magnified galaxy samples. Since 99.9% of the galaxies in

the MICE2 simulations have |κ|< 0.09, the assumption should still hold. However,

it should be investigated in the future whether this is really the case.

Finally, we select two samples from this base catalogue, one with an arbitrary

magnitude limit in the SDSS i-band at mmag
i ≤ 20.2 (applied in Appendix A) and

one that resembles the SDSS BOSS survey, using a target selection similar to Eisen-

stein et al. (2011) (applied in Section 2.3). The details of this BOSS mock sample

selection are summarised in van den Busch et al. (2020).

The i-band number counts of these two samples and the original BOSS data is

shown in Figure 2.2. In Figure 2.2, it becomes apparent how the BOSS selection

function differs from a flux-limited sample. The cut-off of the galaxy population

at the magnitude limit is not as pronounced, while the n(i) no longer increases

monotonically, especially at low redshifts. The galaxy counts per unit area as a

function of redshift of the three samples is shown in Figure 2.1. Here we see how

with the BOSS selection function applied, the redshift distribution is altered in a

highly non-linear manner causing it to be multi-peaked with a main peak at z ∼ 0.5.

The magnitude-limited sample, on the other hand, follows a roughly single-peaked

distribution dominated by low redshift galaxies (z ∼ 0.3).

Having knowledge of the underlying matter distribution allows us to compare

estimates of the scale of flux magnification through αobs(m) from observables as

given by Equation (2.6) with the ακ estimate as given by Equation (2.5). When

analysing the MICE2 mock observations, we only consider the SDSS model i-band

magnitude, due to a lack of available SDSS cmodel magnitudes from the simula-

tions.

As a sanity check of our methods outlined in Section 2.2.3, we conduct an es-

timate of the magnification bias induced by a flux/magnitude-limited sample selec-
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tion function on a galaxy survey over an eighth of the sky in Appendix A. For this,

we use the MICE2 simulations to obtain the positions and magnitudes of galaxies

before and after magnification, while knowing the true underlying matter density.

We set the magnitude limit in the i-band to a magnitude of 20.2 (similar to the mag-

nitude limit in the i-band of the BOSS survey). We find that the calibrated αobs

values accurately recover ακ near the faint limit. At the same time, the αobs esti-

mates are robust over large changes in the calibration range chosen, showing that

the power law approximation holds within ∼ 1σ over ∆i ∼ 1 and within ∼ 2σ over

the whole magnitude range for both zlow and zhigh.

To conduct the analysis for the case where the target selection function is not

flux or magnitude limited, we select a ∼ 5,000 deg2 area from the MICE2 sim-

ulations and apply the aforementioned sample selection function to it. The i-band

magnitude distribution of the BOSS and MICE2 galaxies within each of the redshift

bins is shown in Figure 2.2. Here, we see that, although the overall shape of the pop-

ulation is similar between the BOSS and the MICE2 galaxies, the MICE2 objects

are consistently shifted towards the fainter end of the distribution. This is at least

partially caused by the fact that the BOSS magnitudes are i-band cmodel magni-

tudes and the MICE2 magnitudes are SDSS model i-band magnitudes. In addition,

the MICE2 simulations with a BOSS-like selection function do not seem to capture

the population of galaxies at the extremes of the magnitude distribution. Both of

these biases might also be due to some assumptions in the galaxy formation and

evolution models used in the MICE2 simulations. In addition, the fiducial cosmol-

ogy assumed for the simulations might not agree with the cosmological parameters

preferred by the BOSS data. However, the method of calibrating the αobs estimates

from the observations with the simulations is not sensitive to a constant shift in

the distribution nor is it sensitive to the extremes of the magnitude distribution by

construction.

2.2.3 Calibration Procedure on Simulations

To calibrate the αobs obtained from observations, we first have to determine an

accurate estimate of the underlying luminosity function slope, ακ , in the MICE2
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Figure 2.3: Flow chart outlining the method used to estimate the magnification bias of
galaxy samples with an arbitrary sample selection. N stands for the count of
lensed galaxies, N0 refers to the counts of unlensed galaxies, κ to the conver-
gence, ακ to the luminosity function slope determined from the known κ , n(m)
is the differential galaxy count distribution over magnitude, m, αobs is the lu-
minosity function slope as determined from n(m).

simulations as given by Equation (2.5). As outlined in Figure 2.3, we first spatially

bin the lensed and unlensed galaxy positions using HEALPIX at a resolution of

nside = 64 (Górski et al., 2005). Within each bin/pixel, we evaluate lensed and

unlensed cumulative galaxy counts, N and N0 respectively, as well as the average

convergence, κ . We then perform a least squares linear fit of the relative difference

between lensed and unlensed galaxy counts over the convergence, κ , to estimate ακ

(as shown in Figure 2.4). This is a consequence of the linearity between these two

quantities which emerges in the weak lensing limit as given by Equation (2.5).

In order to obtain better estimates of the uncertainties of α , the HEALPIX

pixels are grouped into tiles (HEALPIX pixels with a resolution of nside = 4) for

which we repeat the analysis independently each time. The weighted mean of these

values obtained from each tile gives the final estimate for ακ , ακ , while the standard

deviation between these values is used to estimate the uncertainty as given by
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Figure 2.4: Plot of the relative difference in galaxy counts per pixel over the mean conver-
gence (κ) in each pixel for a HEALPIX pixelation with nside = 64 and in the
zhigh redshift bin (0.5 < z ≤ 0.75). The graph only shows pixels within 1 of
28 tiles. The relative difference between the lensed and unlensed galaxy counts
in each pixel are shown as blue points. The black line is fitted to the blue data
points with Equation (2.5) to give the ακ value shown in the legend.

σ
2
α ≡

M
∑

i=1

(αi−α)2

σ2
i

(M−1)
M
∑

i=1

1
σ2

i

, (2.14)

where αi are the α estimates from each tile or bin, σi is their associated uncertainty,

α is the weighted mean of the α estimates and M is the number of tiles over which

the analysis is repeated. When σi = σ , Equation (2.14) reduces to the equation for

the error of the mean, i.e. σα ≡ σsd/
√

M where σsd ≡ (∑M
i=1(αi−α)2/(M−1))1/2.

As an alternative, one might think that it would be enough to assume that the

uncertainty on the galaxy counts is given by a noise, which considers the correlation

between the lensed and unlensed galaxy counts (which is shown in the errorbars

of the data points in Figure 2.4). We find, however, that this approach leads to

underestimates of the uncertainties. Sampling ακ over many different areas in the

sky gives a more conservative estimate of the uncertainty, while also accounting for

the local fluctuations in the BOSS sample.
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A possible cause for concern when comparing the magnified and unmagnified

galaxy populations can be the edge cases where, for a given bin or pixel, the un-

magnified galaxy number count N0 = 0, while the magnified number counts N = 1

or vice versa. These cases cause divergences in the relative difference and unre-

alistic uncertainties, since they introduce null denominators. For this reason, they

are excluded in the analysis. In any case, the frequency of these occurrences is

usually found to be negligible for the HEALPIX resolutions and redshift bins used

in this work. Dividing the 5,000 deg2 MICE2 simulations into two redshift bins at

a HEALPIX nside = 64, there are none of these cases. While considering 19 red-

shift bins at the same HEALPIX resolution, only ∼ 0.7% of the pixels have to be

discarded.

2.2.4 Determining Magnification Bias from Observations

After having determined the luminosity function slope, ακ , from the simulations

as described in Section 2.2.3, we estimate the optimal magnitude range, ∆m, to

calibrate the estimate of αobs from mock observations using ακ .

To do this, we first choose a magnitude band, m, that has been used to select (at

least, partially) the galaxy sample of interest. Another magnitude band will carry

less information about flux magnification. Then, we determine the discrete dif-

ferential galaxy count distribution, n(m), over the chosen magnitude, m, for a given

redshift range. Subsequently, we find the magnitude at which the faintest most dom-

inant peak in n(m) occurs. This value is considered to be the effective magnitude

limit of the galaxy sample. From n(m), we compute αobs(m) using Equation (2.6).

Thereafter, we calculate the weighted mean of αobs(m), αobs, over all possible mag-

nitude ranges, ∆m, below the effective magnitude limit determined before.

In order to find the optimal ∆m which will be used for the calibration of

αobs from the actual observations, we find the value of αobs(∆m) which is in

best statistical agreement with the value of ακ determined previously for the same

galaxy sample and redshift range. Therefore, the optimal αobs(∆m) value is the

one which minimises the number of standard deviations it deviates from ακ , i.e.

|αobs(∆m)−ακ |/σακ
.
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The reason behind choosing a magnitude range, ∆m, relative to the effective

magnitude limit of the differential galaxy count distribution, n(m), for calibration

is to account for one of the simplest forms of disagreement between the observed

n(m) and the n(m) from mock observations. This disagreement being a constant

shift in the domain of n(m). For instance, such a shift exists between the n(m)

from the BOSS and MICE2 samples which has been discussed in Section 2.2.2

and shown in Figure 2.2 already. If we were to evaluate α
MICE2
obs and α

BOSS
obs over

the same magnitude range, while disregarding the difference between their n(m)

distributions, the αobs estimates will be biased. This happens because we would be

probing regimes of n(m) from the observed galaxy sample beyond or far below its

magnitude limit when calculating αobs. Other higher-order biases in the n(m) from

mock observations may exist which would require more complex parametrisations

of the calibration procedure. Nevertheless, in such cases, it might be more efficient

and physically motivated to adjust the models used to produce the mock galaxy

samples such that the agreement in n(m) improves up to a point where it can be

mostly parametrised by a constant shift in the magnitude.

In any case, once the optimal ∆m to reconcile αobs and ακ from the mocks

has been determined, it may be used to calibrate αobs from the observations. As

summarised in the lower third of Figure 2.3, we first compute n(m) for the given

redshift range. We again find the faintest most dominant peak in n(m) and set it as

the effective magnitude limit and evaluate αobs(m) from n(m). Lastly, we calculate

the weighted mean of αobs(m) over the optimal magnitude range below the effective

magnitude limit, ∆m, determined before from the simulations over the same redshift

range. Thus, we produce the final αobs estimate for that sample.

2.3 Applications to BOSS Lenses

We proceed to apply the method described in Sections 2.2.3 and 2.2.4 to the BOSS

lens galaxy sample introduced in Section 2.2.1. The magnitude bands selected for

this are cmodel magnitudes, since they are better indicators of the overall flux emit-

ted by a galaxy. The specific magnitude band chosen is based on which band was
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used to select the dominant population within a sample. In other words, when work-

ing with LOWZ-dominated galaxy samples (z < 0.36), we use the r-band and when

working with CMASS-dominated samples (z > 0.36), we use the i-band (Eisen-

stein et al., 2011). To allow for accurate forecasting of the KiDS-1000+BOSS

analysis (Heymans et al., 2021), we choose the same convention for the redshift

bins: 0.2 < z ≤ 0.5 and 0.5 < z ≤ 0.75. Consequently, both bins are dominated

by CMASS galaxies, so we opt to use i-band magnitudes for the analysis of both

samples.

As demonstrated in Appendix A, for the flux-limited case, we can accurately

and robustly estimate the magnitude of the magnification bias by determining the

effective luminosity function slope α through the weighted mean of αobs near

the magnitude limit. In this section, we discuss whether the same can be said

when applying a complex sample selection function which does not have a clear

flux/magnitude limit such as in the case of the BOSS survey.

Firstly, we directly estimate ακ from the MICE2 simulations following the

approach outlined in Section 2.2.3. An example of this is shown in Figure 2.4,

where we see the ακ estimate within a single ∼ 200 deg2 tile containing 256 pixels

within the zhigh bin. This procedure is repeated for each tile and redshift bin.

Then, we find the weighted mean between the ακ from each tile to determine the

ακ for each redshift bin and its uncertainty given by Equation (2.14). This gives

α
zlow
κ = 2.43±0.09 and α

zhigh
κ = 3.26±0.07.

Next, applying the procedure discussed in Section 2.2.4 and using the differ-

ential galaxy count distributions for each redshift bin shown in Figure 2.2, we can

estimate αobs; once for the simulated BOSS-MICE2 observations, and once for the

actual BOSS observations. In Figure 2.5, for zlow, we find that the estimate is

optimal near the faint end of the count distribution, which is expected, since the

assumed flux power law should be most accurate in the faint limit. However, this

does not appear to be the case for the high redshift sample, zhigh. For this range, the

estimate is optimal when considering the whole magnitude range up to the turn-off

magnitude. This might be due to incompleteness in the sample and/or the complex
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Figure 2.5: αobs estimates from MICE2 simulations with the BOSS selection function over
different i-band magnitude ranges below the turn-off magnitude, ∆i, considered
to calculate the weighted average. Two redshift ranges are considered: zlow
with 0.2 < z ≤ 0.5 (top) and zhigh with 0.5 < z ≤ 0.75 (bottom). The red
cross marks the α estimate which overlaps the most with the ακ truth from the
simulations (black vertical line).

selection, which flattens the observed number counts (Hildebrandt, 2016).

Taking the magnitude range from the optimal α
MICE2
obs estimate to calibrate

α
BOSS
obs gives the estimates shown in Figure 2.6. For the MICE2 mocks, we find that

α
zlow
κ = 2.43±0.09, while α

zlow
obs = 2.442±0.002. In addition, α

zhigh
κ = 3.26±0.07,

while α
zhigh
obs = 3.08±0.32 which indicates that the α estimates obtained from ob-

servations using Equation (2.6) are a good indicator of the scale of the magnification

bias even when there is a complex sample selection function when they are properly

calibrated. For this reason, we may consider the αobs estimates given in Table 2.1

from the actual BOSS observations as unbiased indicators of the scale of the mag-
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Figure 2.6: The slope of the BOSS luminosity function, α , as a function of the i-band
magnitude (i) for two redshift bins: 0.2 < z ≤ 0.5 (top) and 0.5 < z ≤ 0.75
(bottom). The red line shows αobs(i) as given by Equation (2.6) calculated
from the MICE2 mocks, while the black line shown αobs(i) as determined from
the BOSS DR12 photometric data. The grey vertical lines mark the upper and
the lower bounds of the magnitude range used to find α

BOSS
obs , while the red

vertical lines mark the upper and lower bounds of the highlighted magnitude
range used to determine α

MICE2
obs . The arrows indicate the constant magnitude

shift applied to reconcile the differential galaxy count distribution, n(m), from
observations with the n(m) from mocks. The dotted black horizontal line marks
the αobs estimate from BOSS galaxies, the dashed red horizontal line marks the
αobs estimate from MICE2 mock galaxies and the blue dot-dashed horizontal
line marks the effective α

MICE2
κ determined from the weak lensing convergence

with Equation (2.5) and used to calibrate α
MICE2
obs .
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nification bias. Note that the value for zlow, slightly deviates from the value of

α
BOSS
obs = 1.80±0.15 quoted in Joachimi et al. (2021), since there have been minor

adjustments in the way peaks in n(m) are detected. This leads to a 16% change in

the amplitude of the mag. bias contribution, which has no effect on the KiDS-1000

analysis as the GGL contributions are marginal.

When comparing the αobs(i) curves for each bin in Figure 2.6, one might no-

tice that the turn-off near the effective magnitude limit is not as steep for zhigh

as for zlow. This is due to the complex BOSS selection function which deviates

particularly strongly from a simple flux limit at high redshifts. Here is where the

semi-empirical calibration of the magnitude range considered in order to determine

the effective luminosity function slope αobs is especially relevant. As shown in

Figure 2.5, we find that for zhigh we get a more accurate α estimate when consid-

ering the entire magnitude range ∆i available below the effective magnitude limit

which is in stark contrast with the results found for a flux-limited sample (see Fig-

ure A.2). The opposite is the case for zlow. As shown in Figure 2.6, the double

peak in the zlow bin combined with a clearer ‘flux limit’ near the peak magnitude

means that the power law model for the luminosity function holds best within a

small magnitude range near the peak. In other words, the ∆i intervals which pro-

vide the best agreement between αobs and ακ are also the magnitude intervals over

which n(m) resembles a power law the most. Therefore, our method actively avoids

basing its estimates on a magnitude domain where the power law approximation in

Equation (2.2) does not hold.

We note that in Figure 2.2 the simulated and the observed differential count dis-

tributions do not quite match. The n(i) from MICE2 mock observations is shifted

by a ∆i ≈ 0.2 to the faint end with respect to the BOSS n(i). This might be due to

some limitations in the galaxy model of the MICE2 simulations. The fact that the

n(m) from the mocks and observations do not match perfectly seems to be driving

the discrepancy between α
MICE2
obs and α

BOSS
obs shown in Figure 2.6. However, since

our calibration is based on a magnitude range of a fixed width relative to the effec-

tive magnitude limit for each sample, the estimates are not sensitive to this apparent
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Table 2.1: Table showing the effective luminosity function slopes derived from Figure 2.6
for each redshift bin of the BOSS galaxy sample.

Bin Redshift range Luminosity function slope (αBOSS
obs )

zlow 0.2 < z ≤ 0.5 1.93±0.05
zhigh 0.5 < z ≤ 0.75 2.62±0.28

shift in the domain of n(i). The only thing which can bias our estimates are any dis-

agreements in higher-order derivatives of n(m) near the effective magnitude limit

between observations and simulations. However, the uncertainties of αobs from

Equation (2.14) are defined such that they consider the variations of αobs within the

calibration magnitude range.

In addition, to see how α evolves over redshift within zlow and zhigh, we

repeat this analysis of the BOSS sample again for a different choice of redshift

bins producing the α estimates shown in Figure 2.7. Here, the edges of the

15 redshift bins are given by {0.2,0.225,0.25,0.3,0.4,0.5,0.525,0.55,0.575,0.6,

0.625,0.65,0.675,0.7,0.725,0.75}. Since the redshift bins between z = 0.2 and

z = 0.4 are dominated by LOWZ galaxies, we choose a bin width of 0.1 instead

of 0.025 between z = 0.3 and z = 0.5. This is done to mitigate the sharp gradient

changes in n(m) in the BOSS sample at redshifts near z = 0.36, i.e. at the boundary

between the LOWZ and CMASS samples as shown in Figure 2.1.

Figure 2.7 shows how the effective luminosity function slope ακ in the MICE2

sample varies smoothly. Nonetheless, αobs for MICE2 and for BOSS varies more

strongly with redshift, due to their sensitivity of small variations in n(m). Also,

α
MICE2
κ is consistent with α

MICE2
obs over most of the redshift range. However, for a

few redshift bins, α
MICE2
obs is in a ∼ 1σ to ∼ 2σ tension with ακ despite being cali-

brated to optimally overlap. Taking ακ as the underlying truth, we consider α
MICE2
obs

and α
BOSS
obs to be biased in these cases. This seems to be driven by small discrep-

ancies between the faint-end of n(m) from MICE2 and the faint-end of n(m) from

BOSS. These are then exacerbated, since a small change in the sample size can lead

to radical changes in the gradient of the magnitude distribution n(m) of these galax-

ies, causing substantial biases in the αobs estimates, as discussed in Hildebrandt

(2016). Nonetheless, these discrepancies become insignificant as we increase the
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Figure 2.7: Plot of different α estimates for 16 different redshift (z) bins within 0.2 < z ≤
0.75. The black crosses mark the α

BOSS
obs estimates from observations within

each bin, the red triangles mark α
MICE2
obs estimates from mock observations and

the blue circles mark the true effective α
MICE2
κ determined from the weak lens-

ing convergence with Equation (2.5) and used to calibrate α
MICE2
obs .The values

of α
MICE2
obs and α

BOSS
obs for the bins with z < 0.4 have been derived from the dif-

ferential galaxy count distribution with respect to the r-band magnitude, n(r),
while the values for the bins with z > 0.4 have been derived from n(i). The
horizontal lines show the α estimates from simulations obtained for the zlow
bin (0.2 < z ≤ 0.5) and the zhigh bin (0.5 < z ≤ 0.75).

sample size by widening the redshift bin width to the one used in the main analysis

(i.e. 0.2 < z ≤ 0.5 and 0.5 < z ≤ 0.75). We also note that the α
BOSS
obs estimates for

the 0.2 < z ≤ 0.225 and 0.225 < z ≤ 0.25 bins may be biased. This is the case, since

the profile of n(m) as obtained from the MICE2 simulations deviates from the n(m)

observed in BOSS more strongly than over the remaining redshift range. Hence, the

calibration range determined through our method does not necessarily apply any-

more (as already mentioned in Section 2.2.4) and the estimates may be inaccurate.

To avoid this, we highlight the necessity for accurate cosmological simulations over

the whole redshift domain.
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2.4 Magnification Bias in Weak Lensing Measure-

ments

Having produced estimates for the effective luminosity function slope (αobs) for

the BOSS DR12 galaxy sample, we now proceed to make forecasts of the impor-

tance of magnification bias in the GGL signals. The forecasts are produced from

cross correlating source galaxies from weak lensing surveys with the BOSS lens

samples considered in Section 2.3. First, we produce forecasts for the GGL sig-

nals for a KiDS-1000+BOSS DR12 analysis as described in Joachimi et al. (2021).

Secondly, we produce similar forecasts for a GGL analysis of HSC Wide+BOSS

DR12 similar to Speagle et al. (2019), while using the source bins described in

Hikage et al. (2019). Lastly, we produce GGL forecasts for a potential Euclid-

like+DESI-like analysis using the galaxy sample properties defined in the Euclid

collaboration forecast choices (Euclid Collaboration et al., 2020), The properties of

all of the aforementioned galaxy samples are given in Table 2.2 and their redshift

distributions, P(z), are given in Figure 2.8.

Throughout the forecasts, we assume a Planck 2018 TT,TE,EE+lowE flat

ΛCDM cosmology (Planck Collaboration et al., 2020) with ωb = 0.02236, ωc =

0.1202, h = 0.6727, ns = 0.9649, ln(1010As) = 3.045, Ωκ = 0, w = −1, and

∑mν = 0.06 eV c−2. To model the cross-power spectrum between galaxy and mat-

ter distribution (Pgm, e.g. Section 2.1.3), we split the power spectrum into linear and

a non-linear part as outlined in Joachimi et al. (2021) based on Sánchez et al. (2017)

and set b1 = [2.1,2.3], b2 = [0.2,0.5], and γ3 = [0.9,0.1] where the first value of each

vector corresponds to the first lens bin (zlow) and the second values to the second

lens bin (zhigh). b1 is linear galaxy bias parameter, b2 is the second-order galaxy

bias parameter, and γ3 is the non-local galaxy bias term. These values follow the

rounded best-fit values from the cosmic shear and GGL analysis of KV450+BOSS

(Tröster et al., 2020). We use the halo and intrinsic alignment models described in

Section 2.1 and set Abary = 3.13 (upper limit of the KiDS-1000 prior) and AIA = 0.8

(best estimate from Tröster et al. 2020).
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Table 2.2: Properties of the galaxy samples used to produce the galaxy-galaxy lensing fore-
casts.

Bin z range z zmed ngal σε,i
zlow 0.2 < zspec ≤ 0.5 0.38 0.37 0.014 -
zhigh 0.5 < zspec ≤ 0.75 0.60 0.55 0.016 -
KiDS1 0.1 < zphot ≤ 0.3 0.26 0.21 0.62 0.27
KiDS2 0.3 < zphot ≤ 0.5 0.40 0.36 1.18 0.26
KiDS3 0.5 < zphot ≤ 0.7 0.56 0.54 1.85 0.27
KiDS4 0.7 < zphot ≤ 0.9 0.79 0.75 1.26 0.25
KiDS5 0.9 < zphot ≤ 1.2 0.98 0.93 1.31 0.27
HSC1 0.3 < zphot ≤ 0.6 0.61 0.45 5.5 0.28
HSC2 0.6 < zphot ≤ 0.9 0.78 0.72 5.5 0.28
HSC3 0.9 < zphot ≤ 1.2 1.09 1.01 4.2 0.29
HSC4 1.2 < zphot ≤ 1.5 1.37 1.30 2.4 0.29
Euclid1 0.001 < zphot ≤ 0.418 0.33 0.21 3.0 0.21
Euclid2 0.418 < zphot ≤ 0.560 0.51 0.49 3.0 0.21
Euclid3 0.560 < zphot ≤ 0.678 0.63 0.62 3.0 0.21
Euclid4 0.678 < zphot ≤ 0.789 0.75 0.73 3.0 0.21
Euclid5 0.789 < zphot ≤ 0.900 0.85 0.84 3.0 0.21
Euclid6 0.900 < zphot ≤ 1.019 0.96 0.96 3.0 0.21
Euclid7 1.019 < zphot ≤ 1.155 1.09 1.09 3.0 0.21
Euclid8 1.155 < zphot ≤ 1.324 1.23 1.24 3.0 0.21
Euclid9 1.324 < zphot ≤ 1.576 1.42 1.45 3.0 0.21
Euclid10 1.576 < zphot ≤ 2.500 1.85 2.04 3.0 0.21

Notes. z stands for the mean redshift in each tomographic bin, zmed for the median redshift,
ngal for the galaxy number density in arcmin−2 following the definition from Heymans

et al. (2013) and σε,i for the dispersion per ellipticity component. zlow and zhigh are the
lens bins based on the BOSS DR12 galaxy clustering data. The KiDS source bins have
been defined in accordance with the methodology for the KiDS-1000 GGL analysis as

given in Joachimi et al. (2021) and Heymans et al. (2021) based on the redshift calibration
described in Hildebrandt et al. (2021) and Wright et al. (2020a). The properties of the HSC
source bins are based on the information provided in Table 1 of the HSC Y1 cosmic shear

analysis (Hikage et al., 2019) and the source P(z) distributions are based on the DEmP
photometric redshifts. The tomographic bins for the Euclid forecasts are in accordance
with the Euclid collaboration forecast choices (Euclid Collaboration et al., 2020). The

Euclid P(z) distributions are determined using the fitting formula from Joachimi & Bridle
(2010) assuming equi-populated binning with an overall median redshift of 0.8.
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Figure 2.8: Redshift distributions P(z) for the lens and source galaxy samples used in the
forecasts for the galaxy-galaxy lensing signal in a KiDS-1000+BOSS, HSC
Wide+BOSS and Euclid-like+DESI-like analysis. The properties of these red-
shift distributions are given in Table 2.2.The black vertical dot-dashed lines
show the limits of the BOSS lens bins for comparison with the source bins.
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2.4.1 KiDS-1000 + BOSS Forecasts

Following the approach outlined in Section 2.1.3, we propagate the αobs measure-

ments for zlow and zhigh shown in Table 2.1 into angular power spectrum predic-

tion for the galaxy-galaxy lensing signal. We then determine the ratio between the

angular power spectrum correlating gravitational shear with the lensing-induced

magnification bias in the lens sample, C(ij)
mG(ℓ), and the angular power spectrum

correlating the lens galaxy distribution and the source gravitational shear, C(ij)
gG (ℓ),

as shown in Figure 2.9.

In order to put these contributions into perspective, we also estimate the sta-

tistical uncertainty in the GGL signal assuming shot and shape noise only (see for

example Joachimi & Bridle, 2010). We calculate this for 6 logarithmically spaced ℓ

bins per dex, while assuming the footprint area of the full KiDS survey, A = 1,350

deg2. In Figure 2.9, we then compare the relative magnification-shear signal to the

relative GGL uncertainty for each ℓ bin. The magnification-shear correlation found

between these bins constitutes a few-per cent contribution to the galaxy-galaxy lens-

ing signal correlated with the zlow bin. To compare that to the shape and shot noise,

σgG, we define the cumulative signal-to-noise ratio, SNR, within a range of angular

scale, ℓmin < ℓ < ℓmax, as follows

SNR(ℓmin < ℓ < ℓmax) =

(
1
K

K

∑
i

SNR2
i

)1/2

=

(
1
K

K

∑
i

C2
mG(ℓmin,i < ℓ < ℓmax,i)

σ2
gG(ℓmin,i < ℓ < ℓmax,i)

)1/2

, (2.15)

where K is the number of ℓ bins, i labels each ℓ bin, and ℓmin,i and ℓmax,i mark

the lower and upper limits of each bin, respectively. For the correlations with the

zlow bin, this implies a cumulative signal-to-noise ratio for 100 < ℓ < 4600 be-

tween 0.1 and 0.3. This contribution becomes larger for the high-redshift source

bin (zhigh), from ∼ 5% to ∼ 20% of the GGL signal, while the shot and shape
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noise is of a similar scale. Hence, the cumulative SNR(100 < ℓ < 4600) = 0.2 for

the correlation between the zhigh and the first KiDS redshift bin, while the cumu-

lative SNR(100 < ℓ < 4600) = 1.1 between the zhigh and the fifth KiDS bin. At

the same time, these α values lead to a maximal contribution of the magnification

bias to the clustering signal of ∼ 0.6% (Joachimi et al., 2021). Even though we are

assuming the area of the full 1,350 deg2 KiDS footprint, these contributions to the

GGL signal by magnification are large enough to prompt the consideration through

modelling in the analysis of this systematic in the KiDS-1000+BOSS analysis out-

lined in Joachimi et al. (2021). Nonetheless, since the analysis shown here already

provides an accurate estimate for the magnitude of the magnification bias, the con-

tribution to the GGL signal in each bin can simply be fixed and added to the overall

GGL angular power spectrum without the need to add any more free parameters in

the astrophysical models.

We note the oscillations at low ℓ for some of the zhigh correlations in Fig-

ure 2.9. These originate from fluctuations from a power law of < 1% in CgG(ℓ) for

100 < ℓ < 500. They can be attributed to BAO as their amplitude decreases with

ωb. In Figure 2.9 and subsequent forecasts discussed Sections 2.4.2 and 2.4.3, the

fluctuations in CmG(ℓ)/CgG(ℓ) at low ℓ appear to be increased to amplitudes > 1%

from the mean. This is caused by the non-BAO signal in CgG(ℓ) being approxi-

mately proportional to CmG(ℓ) at low ℓ. Hence, after taking their ratio, the only

signal that does not approximately cancel is the BAO signal in CgG(ℓ). In any case,

the variations in CgG(ℓ) are well below the uncertainties over that range (which are

typically ≫ 2%), so they would be undetectable for now.

2.4.2 HSC Wide + BOSS Forecasts

We repeat the analysis for Section 2.4.1, considering the HSC Wide source bins.

Figure 2.10 shows the ratio between C(i,j)
mG (ℓ) and C(i,j)

gG (ℓ) together with the relative

uncertainty in the GGL signal for each ℓ bin assuming a full footprint area of 1,400

deg2 (Aihara et al., 2018) as well as the galaxy sample properties shown in Table 2.2.

Similar to KiDS, we find that the magnification-shear signal only contributes about

∼ 2% to the GGL signal correlated with the zlow lens bin (giving a cumulative SNR
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Figure 2.9: Magnification bias contribution CmG(ℓ) relative to the galaxy-galaxy lensing
signal CgG(ℓ) over the angular scale ℓ (in red) for the crosscorrelations between
the BOSS DR12 lens bins and the KiDS-1000 source bins assuming α

zlow
obs =

1.93 and α
zhigh
obs = 2.62. In blue, we show the expected relative uncertainty

from shot and shape noise in the GGL signal, σgG(ℓ)/CgG(ℓ), within each ℓ
bin (6 logarithmically spaced ℓ bins per dex). The uncertainties are calculated
for a KiDS footprint with an area of 1,350 deg2. The properties of the galaxy
samples are given in Table 2.2.

within 100 < ℓ< 4600 between 0.4 and 0.5). In correlations with the zhigh lens bin,

the contribution of the magnification-shear signal is larger and between ∼ 5% and

∼ 20% which is considerable above the shape and shot noise (with a cumulative

SNR within 100 < ℓ < 4600 between 1.3 and 2.0). It is significant enough to give

grounds for the consideration of this systematic during future GGL analyses which

cross correlate the HSC Wide sample with the BOSS DR12 or a similarly selected

lens sample.

2.4.3 Euclid-like Survey + DESI-like Survey Forecasts

We produce forecasts for a GGL analysis with Stage-IV (Albrecht et al., 2006),

assuming lens and source samples akin to DESI (DESI Collaboration et al., 2016)

and Euclid (Laureijs et al., 2011), respectively. We repeat the analysis shown in

Section 2.4.1 and 2.4.2 for the Euclid-like source bins described in Table 2.2 and in

Figure 2.8. We consider a footprint overlap between our source and lens sample of

6,000 deg2, which is roughly the expected overlap between Euclid and DESI (Levi
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Figure 2.10: Same as Figure 2.9, but for HSC source bins as defined in Table 2.2 and Fig-
ure 2.8.

et al., 2013; DESI Collaboration et al., 2016). Therefore, the fictitious BOSS/DESI-

like galaxy sample we are considering here has all the properties of the BOSS lens

sample, but has the planned DESI footprint. Although DESI will probe higher

redshifts and fainter galaxies than BOSS, it will be similar to BOSS in that it will not

be a purely flux-limited survey. Targets in DESI are selected using a combination of

different band magnitudes depending on the galaxy type and redshift range which

is being observed (for more details see DESI Collaboration et al. 2016). For this

reason, the magnification bias in the DESI sample cannot be modelled analytically

either, warranting an analysis similar to the one discussed here. The Euclid-like

source sample used in this work is designed to be split into the same redshift bins

as suggested by Euclid collaboration forecast choices (Euclid Collaboration et al.,

2020). In addition, within each bin, the median redshift is chosen to be in agreement

with the one expected for the Euclid sources.

Considering 6 logarithmically spaced ℓ bins per dex (as in the previous sec-

tions), we obtain the magnification-shear signal forecasts shown in Figure 2.11. We

see that the magnification-shear signal constitutes a considerable systematic when

correlating with the zlow bin, since the observed cumulative SNR on scales within
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Figure 2.11: Same as Figure 2.9, but for Euclid-like source bins as defined in Table 2.2 and
Figure 2.8.

100 < ℓ < 4600 is between 0.3 and 0.7. The magnification bias signal becomes

strong enough for correlations with zhigh, it would be a detectable signal (with the

cumulative SNR within 100 < ℓ < 4600 ranging from 1.5 when correlating zhigh

and Euclid1 to 2.8 when correlating zhigh and Euclid10). This might require any

future GGL analysis of Euclid+BOSS or Euclid+DESI data to allow for the α pa-

rameters to freely vary as a nuisance parameter in order to properly account for this

systematic. The method outlined in this work could be used to set informative priors

on the α values within each lens bin.
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2.5 Conclusions

In this chapter, we have introduced a novel method to estimate the effective lumi-

nosity function slope, α , of galaxy samples which have been defined with a complex

selection function that is not simply flux/magnitude-limited. The method calibrates

the α estimates from observables with accurate cosmological simulations with the

same sample selection. This expands upon previous work where the flux mag-

nification was only measured for flux-limited cases or found to be inaccurate in

non-flux-limited cases (Hildebrandt, 2016).

The new method determines the underlying slope of the luminosity function

of the simulated galaxy sample (ακ ) from unobservable properties such as the con-

vergence, κ , and the unlensed galaxy position. It then finds the magnitude range

relative to the magnitude limit over which the resulting αobs as calculated from

the observable differential galaxy count distribution, n(m), best agrees with ακ . Fi-

nally, the same relative magnitude range is used to determine αobs from the observed

galaxy sample.

A few things should be considered when employing this method. We find that

the magnitude ranges up to the effective magnitude limit that are determined to be

optimal from the simulations in order to calibrate αobs are only valid for a given

redshift range, a given sample selection function and a given galaxy sample for

which weak lensing simulations are available. Thus, it is important to note that

this method cannot be generalised trivially, as it requires the availability of accurate

cosmological simulations to assure consistency between the two independent α es-

timates, αobs and ακ . Nonetheless, when simulations are available, it provides a

robust estimate of the scale of the magnification bias for non-flux-limited surveys

such as BOSS.

Applying our calibration method to the BOSS DR12 sample split into two

redshift bins, we find that αobs = 1.93±0.05 for 0.2 < z ≤ 0.5 and αobs = 2.62±
0.28 for 0.5 < z ≤ 0.75 leading to a contribution to the galaxy-galaxy lensing signal

of up to ∼ 2% for KiDS-1000 and HSC Wide sources correlated with the 0.2 <

z ≤ 0.5 lens bin. Although the contribution can go up to ∼ 20% when correlating
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KiDS-1000 and HSC Wide sources with the 0.5 < z ≤ 0.75 BOSS lens bin, the

magnification-shear signal can go above the noise with a cumulative SNR going up

to 1.1 and 2.0 for KiDS-1000 and HSC Wide, respectively. Hence, both for KiDS-

1000 and HSC Wide, the magnification-shear signal appears to be dominant enough

to warrant the modelling of this systematic in future GGL analyses involving BOSS

lenses, as was already done in the recent KiDS-1000 analysis (Joachimi et al., 2021;

Heymans et al., 2021). This necessity becomes even more evident in the forecasts

for a GGL analysis of Euclid-like sources with DESI-like lenses. In this case, the

magnification-shear signal is either a considerable systematic when correlating with

the zlow bin (with a cumulative SNR of around 0.5), or it even becomes a detectable

signal when correlated the source bins with zhigh giving cumulative SNRs around

2 which can go up to 2.8. This might require any future GGL analysis incorporating

Euclid and any highly selected lens sample (e.g. DESI or BOSS) to allow for the

effective luminosity function slope (α) of each lens sample to vary freely within the

model using informative priors based on an analysis similar to the one conducted in

this work. These results are in line with Duncan et al. (2014) as well as the recent

findings from Mahony et al. (2022) where it was determined that the inclusion of

the magnification bias in the modelling for surveys such as the next generation of

surveys is necessary to accurately infer cosmological parameters.

We expect similar conclusions for other surveys. It might be desirable to es-

timate the magnification bias using the methodology outlined in this work in clus-

tering and GGL analyses based on DES REDMAGIC lens galaxies such as the ones

described in Clampitt et al. (2017), Elvin-Poole et al. (2018) and Prat et al. (2018),

since it also follows a complex selection function (Rozo et al., 2016). The SNR

should be comparable to HSC and KiDS, so the magnification bias will not have

to be included as a free parameter. On the other hand, for surveys such as LSST

(LSST Science Collaboration et al., 2009) and the Nancy Grace Roman Space Tele-

scope (formerly known as WFIRST, Spergel et al. 2015), it may become necessary

to make the α of the lens galaxy samples a nuisance parameter in any clustering or

GGL analysis, as we suggest for a Euclid+DESI-like analysis.



Chapter 3

Simulation-Based Inference of

KiDS-1000 Cosmic Shear from

Statistical Forward-Simulations

Cosmic shear, the weak gravitational lensing effect on distant galaxies due to mat-

ter in the foreground, is a powerful tool to study the distribution of matter in the

Universe and to probe its large-scale structure. By measuring the distortions in

the shapes of galaxy images caused by the gravitational influence of intervening

matter, we can infer a combination of the matter density and the amplitude of the

matter power spectrum within the framework of a “Dark Energy Cold Dark Mat-

ter”, ΛCDM, cosmology. Recent cosmic shear analyses of the data taken in stage-

III galaxy surveys, such as the Kilo-Degree Survey1 (KiDS; Kuijken et al. 2019;

Asgari et al. 2021; Heymans et al. 2021; van den Busch et al. 2022), the Hyper

Suprime-Cam survey2 (HSC; Sugiyama et al. 2022; Aihara et al. 2022), and the

Dark Energy Survey3 (DES; Gatti et al. 2021; Amon et al. 2022; Secco et al. 2022),

have constrained these cosmological parameters with unprecedented precision. Up-

coming stage-IV galaxy surveys, such as Euclid4 (Laureijs et al., 2011), Rubin5

(LSST Science Collaboration et al., 2009) or Roman6 (Spergel et al., 2015), will

1https://kids.strw.leidenuniv.nl/
2https://hsc.mtk.nao.ac.jp/ssp/
3https://www.darkenergysurvey.org/
4https://www.euclid-ec.org/
5https://www.lsst.org/
6https://roman.gsfc.nasa.gov/

https://kids.strw.leidenuniv.nl/
https://hsc.mtk.nao.ac.jp/ssp/
https://www.darkenergysurvey.org/
https://www.euclid-ec.org/
https://www.lsst.org/
https://roman.gsfc.nasa.gov/
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further improve upon these constraints, as these surveys will be wider, deeper and

more precise. However, many analysis challenges still remain.

Current stage-III galaxy survey measurements of the root-mean square of the

matter overdensity field at 8 Mpc h−1
0 , σ8, or its analogue S8 ≡ σ8(Ωm/0.3)0.5,

agree well with each other (Hikage et al., 2019; Asgari et al., 2021; van den Busch

et al., 2022; Amon et al., 2022) despite using largely independent methodologies.

However, the constraints from observations of the late Universe (Asgari et al., 2021;

Heymans et al., 2021; van den Busch et al., 2022; Amon et al., 2022; Abbott et al.,

2022) disagree by up to ∼3.4σ with the σ8 value consistent with the early-Universe

observations from the Cosmic Microwave Background (CMB; Planck Collabora-

tion et al. 2020). This discrepancy might be pointing at new physical phenomena,

but it could also be caused by unconsidered systematic effects when modelling the

cosmic shear or CMB signal and noise. Such systematic effects may be physical,

e.g. baryonic feedback or the intrinsic alignments of galaxies (Kilbinger, 2015;

Mandelbaum, 2018; Amon & Efstathiou, 2022; Li et al., 2023; Miyatake et al.,

2023), while they may also be observational, e.g. shear mesurement bias, depth

variability, point-spread function variation, etc.

We aim to shed some light onto this by, for the first time, conducting a full

cosmic shear analysis with the same complexity as current stage-III analyses using

simulation-based inference (SBI). SBI, also known as Likelihood-Free Inference or

Implicit Likelihood Inference, is a Bayesian inference method which does not re-

quire an explicit formulation for the form of the likelihood function of the data given

the parameters of interest. Instead, the likelihood is implicitly calculated by evaluat-

ing the joint probability of data and parameters of interest from forward simulations

which map the parameters to the corresponding mock data vectors. This comes with

multiple advantages with respect to other standard approaches which require an ex-

plicit form for the likelihood. Firstly, the likelihood is allowed to take an arbitrary

form, so one can avoid the typical assumption of a Gaussian likelihood or avoid hav-

ing to define a complex analytical expression for the likelihood. Second, for some

models and measurements, it may not even be possible to define an analytical likeli-
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hood or it would be too resource-intensive. In such cases, as long as the observables

can be simulated, an effective/implicit likelihood may be found using SBI. Lastly,

in many cases, it is already necessary to create forward simulations to validate the

signal and noise modelling used within a standard inference pipeline. When running

a Markov-Chain Monte Carlo (MCMC) to sample the posterior distributions from a

Gaussian likelihood, one either has to compute a numerical covariance matrix from

forward simulations or create an analytical model for the covariance which ought to

be validated with a numerical one. In both cases, for a data vector of size |ddd|, one

would require a number of simulations > |ddd| to get an accurate covariance matrix.

This is already the approximate amount of forward simulations needed for an SBI

analysis (Alsing et al., 2018; Lin et al., 2023). Therefore, SBI allows one to do full

Bayesian uncertainty propagation from data to parameters for any model which can

be simulated, without substantial additional computational costs when compared to

standard approaches at comparable accuracy.

In cosmic shear, we know that the commonly used two-point statistics to quan-

tify the shear-shear correlations of galaxies on the sky have an approximately Gaus-

sian likelihood, but this assumption has its limitations (Eifler et al., 2009; Schneider

& Hartlap, 2009; Sellentin & Heavens, 2018; Sellentin et al., 2018; Taylor et al.,

2019; Upham et al., 2021). Additionally, when observational and physical system-

atics are included, the likelihood may become even less Gaussian (Jeffrey et al.,

2021). In such cases, like the one presented in this chapter, SBI allows one to cap-

ture potential non-Gaussanities and propagate them to the posterior distributions.

SBI can also compute effective likelihoods for summary statistics for which ana-

lytical methods may be intractable. For example, the likelihoods of higher-order

cosmic shear statistics can be complex to evaluate, but SBI can consider the full

complexity of the signal and relevant systematics in the likelihood (Fluri et al.,

2022). This could help current and upcoming galaxy surveys to make sure that as

much cosmological information as possible is rigorously extracted from the obser-

vations. In this work, we limit the scope to only two-point measurements of cosmic

shear, and leave higher-order statistics or field-level statistics within SBI as an av-
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enue for future work. Of course, other summary statistics of cosmic shear such

as higher-order correlators, full shear fields or entire shape catalogues could still

benefit from the SBI approach laid out here, as it can implicitly characterise their

likelihoods which are known to have significant non-Gaussianities.

A potential source of non-Gaussianities in the likelihood of two-point statistics

is the anisotropy in the observational depth of a galaxy survey across the sky (Guzik

& Bernstein, 2005; Shirasaki et al., 2019). The images at different pointings taken

by a galaxy survey, such as KiDS, may be subject to different environmental con-

ditions depending on the time of observation (e.g. atmospheric conditions, thermal

expansion of the telescope, etc.). When the images of each pointing are subse-

quently combined, it may also be the case that due to overlapping areas between

pointings, some galaxies are observed more often than others which can cause vari-

ations in the signal-to-noise ratio which are spatially correlated. In effect, all these

variations lead to fluctuations in the effective galaxy density which are observed

across the footprint, while also biasing the shape measurements made. This has

been determined to be a percentage-level effect on the cosmic shear signal mea-

sured by KiDS (Heydenreich et al., 2020; Baleato Lizancos & White, 2023), and

it has been found to be an effect < 20% on the standard deviation of the KiDS-

1000 cosmic shear signal (Joachimi et al., 2021). Although for KiDS this is within

the random uncertainties, it will become important for upcoming galaxy shear sur-

veys such as Euclid, Rubin or Roman. Additionally, the effect of spatial variability

on the non-Gaussianity of the likelihood has not been explored in previous work.

To address these needs, in this work, our forward model includes the effects of the

observational depth variations in KiDS, so that we may propagate the effects of spa-

tial variations in the depth all the way to the uncertainty on inferred cosmological

parameters.

Although other approaches to SBI exist (e.g. Approximate Bayesian Compu-

tation, ABC; Rubin 1984; Pritchard et al. 1999; Lin & Kilbinger 2015; Lin et al.

2016; Beaumont 2019), we choose to make use of Density Estimation Likelihood-

Free Inference (DELFI), as it offers better performance and therefore scales better
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when increasing the dimensionality of the parameter space of interest (Leclercq,

2018; Alsing et al., 2018). Simultaneously, DELFI discards less information from

the forward simulations than ABC. ABC only keeps the forward simulations which

have a certain level of agreement with the desired data vector. In contrast, DELFI

learns a probability density distribution of the data vectors as a function of the model

parameters based on all of the forward simulations obtained across the prior vol-

ume. To achieve this, DELFI employs ensembles of neural density estimators in

order to learn the joint probability distribution of the data and the parameters from

the forward simulations. Recently, this method has become increasingly popular,

among other things, because it requires about an order of magnitude fewer evalu-

ations of the likelihood to constrain the posterior than a standard MCMC analysis

(Papamakarios & Murray, 2016; Alsing et al., 2018; Taylor et al., 2019; Gerardi

et al., 2021; Leclercq & Heavens, 2021; Jeffrey et al., 2021; Lemos et al., 2021; Le-

gin et al., 2021; Mishra-Sharma & Cranmer, 2022; Mancini et al., 2022; Lin et al.,

2023; Chen et al., 2022; Hu et al., 2022; Lemos et al., 2023b).

In a previous paper (Lin et al. 2023; L22 hereafter), we introduced a new in-

ference pipeline for estimating the cosmological parameters from the cosmic shear

data of KiDS-1000 (Kuijken et al., 2019) using DELFI. In L22, the SBI pipeline

for KiDS is shown to be robust, accurate and efficient, even when constraining a

12-dimensional posterior distribution. However, in that work, the simulated vec-

tors are based on random samples from the covariance matrix used in the fiducial

KiDS-1000 analysis (Joachimi et al., 2021; Asgari et al., 2021; van den Busch et al.,

2022), so the likelihood is Gaussian by construction to allow for direct comparison

with the standard formalism. In this work, we present a novel suite of physically

motivated and realistic forward simulations of the cosmic shear observables as seen

by KiDS, so the neural density estimators may learn any non-Gaussianities in the

likelihood induced by our model plus any complex relations which may arise be-

tween the data and the model parameters. We then use these simulations to create an

inference pipeline consistent in its modelling choices with previous analyses, while

also considering some additional systematic effects in our uncertainty model. The
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Figure 3.1: Spatial map of the KiDS-1000 footprint. The top panel shows a Mollweide
projection of the full KiDS-1000 footprint, while the two panels at the bottom
show zoomed-in Cartesian projections of KiDS-North and KiDS-South fields,
respectively.

obtained posteriors are then scrutinised for accuracy and robustness.

This chapter has the following structure. Section 3.1 presents the Kilo-Degree

Survey’s data used for this analysis. Section 3.2 gives a detailed description the

forward simulations developed for the SBI analysis. Section 3.3 describes the setup

of the simulation-based inference pipeline using DELFI based on L22. Section 3.4

presents the choices made in the forward simulations, based on previous KiDS-

1000 analyses while including anisotropies in the observational depth and a more

complex shear bias model. We also validate the inference pipeline by inferring the

cosmological parameters from a mock data vector, and by conducting a coverage

test of the learned posterior. Finally, Section 3.5 shows the posterior contours and

the estimates of the cosmological parameters obtained from mock KiDS-1000 DR4

data. We then provide some final remarks and conclusions in Section 3.6, while

Appendix B shows additional details on the cosmic shear signal modelling.
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Figure 3.2: Plot of the redshift distributions of the five KiDS-1000 tomographic bins. The
shaded areas show to limits of each tomographic bin, while the solid lines show
the n(z) of the source galaxies in each tomographic bin as a function of both
redshift, z, and comoving distance, χ (the latter is derived assuming a Planck
2018 cosmology; Planck Collaboration et al. 2020). The black dashed lines
show the limits of the spherical matter shells in our forward simulations.

3.1 KiDS-1000 Data

The Kilo-Degree Survey (KiDS) is a large public galaxy survey conducted by the

European Southern Observatory using the OmegaCAM CCD mosaic camera (Kui-

jken, 2011) which is attached to the 2.6 m VLT Survey Telescope (VST). The survey

covers approximately 1,350 deg2 between two distinct fields known as KiDS North

(which straddles along the DEC = 0º) and KiDS South (which straddles along the

DEC = -30º). This area is the same as the one covered by the VISTA Kilo-degree

INfrared Galaxy survey (VIKING; Edge et al. 2013), which means that both surveys

together observe every object with a total of nine photometric bands: ugriZY JHKs.

The analysis presented in this work makes use of DR4 (Kuijken et al., 2019), also

known as KiDS-1000, which covers approximately 1,000 deg2. The effective area

covered by KiDS-1000 shape measurements shown in Figure 3.1 covers 773.3 deg2

(Joachimi et al., 2021). This area is calculated directly from the mosaic mask de-

fined a the native OmegaCAM pixel scale of 0.213 arcsec.

KiDS images are processed using ASTRO-WISE (McFarland et al., 2013) and
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the methodology outlined in Wright et al. (2019) to join the VST and VIKING pho-

tometric measurements. To obtain the shape measurements, THELI (Erben et al.,

2005) is used to process the r-band images, while the gravitational shear estimates

are then obtained from LENSFIT (Miller et al., 2007, 2013; Fenech Conti et al.,

2017). Depending on the shape noise variance and the ellipticity measurement noise

variance, LENSFIT assigns a weight to the shear measurement of each galaxy, wi,

which scales the shear signal such that the signal-to-noise ratio is optimal. Although

KIDS-SBI currently does not model LENSFIT weights (all galaxies are weighted

equally by default), the weights are carried through the measurement pipeline when

measuring the cosmic shear summary statistics from the real KiDS DR4 data. If

the LENSFIT weight is mischaracterised, this may lead to shear bias. For this pur-

pose, the shape measurements in KiDS DR4 are calibrated to determine any shear

biases due selection biases, noise, weight bias, point-spread function residuals or

otherwise are calibrated (Giblin et al., 2021). The resulting estimate of the lin-

ear multiplicative shear bias per tomographic bin is then used to unbias the galaxy

shear measurements in KiDS-1000. All details on the reduction of the images and

the shape calibration are given in Kuijken et al. (2019); Wright et al. (2019); Giblin

et al. (2021).

The photometric redshifts are estimated from the KiDS 9-band photometry us-

ing Bayesian template-fitting as incorporated within the BPZ code (Benı́tez, 2000;

Wright et al., 2019, 2020a). The photometric redshifts are calibrated with spectro-

scopic redshift measurements made of galaxies in the KiDS sample (Hildebrandt

et al., 2021) based on a subsample of 99% completeness. The mapping from pho-

tometric to spectroscopic redshift, P(z|zph), is learnt through a self-organising map

(Wright et al., 2020a). The maximum posterior redshift is subsequently used to

split the source galaxy catalogue into five tomographic bins at the following bound-

aries: {0.1,0.3,0.5,0.7,0.9,1.2}. These then give the redshift distributions shown

in Figure 3.2. As the cosmological constraints are sensitive to shifts in the redshift

distributions, the KiDS-1000 analysis also allows the shift in the mean of each to-

mographic bin to vary freely in the cosmological inference as a nuisance parameter
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(Asgari et al., 2021; Heymans et al., 2021; van den Busch et al., 2022). This does

not only avoid biases in the cosmological parameter estimates, it also provides an

additional test on the redshift calibration.

3.2 Forward Simulations
The forward simulations for cosmic shear analyses described in this chapter are

fully implemented and available in the KIDS-SBI7 module. This code is built

within the Cosmological Survey Inference System (COSMOSIS; Zuntz et al. 2015)

and it is based upon the KiDS Cosmology Analysis Pipeline (KCAP; Joachimi et al.

2021; Asgari et al. 2021; Heymans et al. 2021). In addition, the KIDS-SBI pipeline

is generalisable to other cosmic shear analyses.

The overall outline of the forward simulations is shown in Figure 3.3. Firstly,

the simulation is fed a set of cosmological and astrophysical parameters, ΘΘΘ, from

a sampler of our choice. All of these parameters are passed into CAMB (Lewis

et al., 2000; Lewis & Challinor, 2002; Howlett et al., 2012) which calculates the

three-dimensional matter power spectrum, Pδ ,nl, at a given cosmology (see also

Section 3.2.1 for more details). We incorporate baryonic feedback using HMCODE

(Mead et al., 2016). Next, the simulation splits the light-cone along the line-of-sight

into concentric spherical shells centred at the observer, based on the approach in

Xavier et al. (2016) and Tessore et al. (2023). Such an approach is computationally

efficient as all observables are simulated with a coarse resolution along the line-of-

sight. Within each shell, we sample log-normal random matter fields to efficiently

model the two-point statistics with high accuracy, while also incorporating some

higher-order fluctuations. As an added benefit, this simplifies the implementation

of effects such as redshift evolution as well as survey characteristics, as they usually

also follow a spherical geometry. On the other hand, the concentric shells also allow

to split the Universe into shells, which are of a scale large enough such that a log-

normal field becomes an accurate description of the matter over-densities within it

(see Sects. 3.2.2 for details).

7Kilo-Degree Survey – Simulation-Based Inference; https://github.com/mwiet/
kids_sbi

https://github.com/mwiet/kids_sbi
https://github.com/mwiet/kids_sbi
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3D matter power spec-
trum, Pδ ,nl(kkk,z): Sect. 3.2.1

Baryonic
feedback

Split space into concen-
tric shells: i, j...: Sect. 3.2.2

Resolution along
the line-of-sight

Non-Limber 2D projection: Sect. 3.2.3

2D power spectra, C(i j)
δδ

(ℓ)

Generate log-normal ran-
dom fields: Sect. 3.2.4

Matter, δ (i)(θθθ), & con-
vergence fields, κ(i)(θθθ)

Intrinsic alignments,
κ
(i)
IA (θθθ): Sect. 3.2.5

Sample galaxies: Sect. 3.2.6 & 3.2.7

Angular galaxy positions, θθθ , red-
shifts, ztrue, observed tomographic
bin, p, and observed ellipticity, ε

Survey characteristics

KiDS-1000+ model:
• Mask
• Redshift distributions
• Galaxy density
• Intrinsic galaxy shapes
• Mult. shear bias

+
• Depth variability
• PSF variation
• Additive shear biases

Measure and correct shear: Sect. 3.2.9

Observed shear, εcorr

Measure pseudo-Cls, subtract
noise and binning: Sect. 3.2.10

Pseudo-Cl, C̃(pq)
εε (ℓ)

Figure 3.3: Flowchart describing the steps in a single forward simulation of cosmic shear
observables from cosmological parameters. The dark blue rounded boxes rep-
resent the inputs and outputs which are given to the simulation-based inference
pipeline. The green slanted boxes represent relevant quantities which are cal-
culated during the simulation. The grey rectangular boxes show steps in the
calculations, while the blue slanted boxes show any (systematic) effects which
are included. All variables are defined within the respective sections quoted in
the diagram.
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Once we know the geometry of our matter shells, we can project the three-

dimensional matter power spectrum using the redshift distributions of these shells

in order to obtain their two-dimensional angular power spectra, Cδδ . The latter

describes the correlations between the matter over-densities in each shell. Since

we also require accurate cross-correlations between different shells to compute the

log-normal fields, the Limber approximation is not applicable here, as the cross-

correlations are zero in that approximation with the shells being non-overlapping

along the line-of-sight. To avoid this, we project the three-dimensional matter power

spectrum with a non-Limber integral. This is usually an expensive computation, so

we show here a novel implementation of the Levin method of integration (Levin,

1996) which allows for the efficient integration of the Bessel functions found in

non-Limber integrals (more details are given in Section 3.2.3).

Knowing how the matter overdensity fields within the concentric shells corre-

late with themselves and each other, we can then construct log-normal matter fields

which are consistent with these correlations and their associated cosmology. To

do this, we use the Generator for Large Scale Structure (GLASS8, Tessore et al.

2023), which efficiently generates a log-normal random matter field, δ , within each

shell. Then, it accurately computes the respective convergence field, κ , (see Sec-

tion 3.2.4) while also incorporating an effective convergence field due to intrinsic

galaxy alignments, κIA (see Section 3.2.5).

Upon the construction of the matter, δ , and convergence fields, κ , we use them

to Poisson-sample galaxies that reside within the matter fields as well as their prop-

erties, i.e. intrinsic ellipticities and shear. During this step, with the aid of the

SALMO module (Joachimi et al., 2021), we also consider survey characteristics,

such as the survey footprint, its spatial variability in depth, in its redshift distribu-

tions, as well as its spatial variability in the shape and shot noise as described in

Section 3.2.6. Thus, we obtain a full galaxy catalogue with shape information con-

sistent with the input cosmology as well as with the previously mentioned survey

properties.

8Generator for Large Scale Structure; https://github.com/glass-dev/glass

https://github.com/glass-dev/glass


3.2. Forward Simulations 152

The last steps of the forward simulation pipeline involve the post-processing

and compression of the simulated data catalogue. In principle, any data vector

could be obtained here, such as shear two-point correlation functions (Asgari et al.,

2021; van den Busch et al., 2022), the shear fields (Porqueres et al., 2022) or even

the full catalogues. However, in order to reduce the dimensionality of the data

vector efficiently, while still retaining most information about the cosmology, we

choose observed angular power spectra, a.k.a. pseudo-Cls, as our data vector of

choice. This allows us to compare our SBI analysis to the results from the stan-

dard analysis of KiDS-1000 data using pseudo-Cls in Loureiro et al. (2021). The

KIDS-SBI pipeline is, in principle, set up to make cosmological inferences from

cosmic shear based on any statistic which could be derived from a galaxy cata-

logue, but the underlying statistical random fields are currently only capable of

achieving percentage-level accuracy for two-point statistics. The statistics and its

post-processing are defined in Section 3.2.10.

The forward simulations are designed to model weak gravitational lensing

observations on the level of galaxy catalogues. The galaxy populations are sam-

pled such that they trace the underlying log-normal random matter fields, while the

galaxy shapes are lensed in accordance with the lensing potential of the matter fields

along the line-of-sight. As the simulations do not model images, any image-level

systematic effects, such as shear biases or variable depth, are included as spatially

varying probability density functions.

3.2.1 Cosmology Dependence: 3D Matter Power Spectrum

The basis of the forward simulations is the 3-dimensional matter power spectrum,

Pδ ,nl(k,z;ΘΘΘ). In the linear regime, the equal-time three-dimensional matter power

spectrum’s cosmology dependence comes from the following relation

Pδ ,l(k,z;ΘΘΘ) = T 2(k;ΘΘΘ)D2(z;ΘΘΘ)PR(k;ΘΘΘ), (3.1)

where k is a wavenumber, z is redshift, ΘΘΘ is the set of cosmological param-

eters, PR(k;ΘΘΘ) is the primordial density fluctuation power spectrum, D is the
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growth factor of structure, T is the transfer function between the matter overden-

sity field, δδδ (kkk,z), and the primordial curvature fluctuation field, R(kkk;ΘΘΘ), such

that δδδ (kkk,z) = T (kkk;ΘΘΘ)D(z;ΘΘΘ)R(kkk;ΘΘΘ). To compute this, we make use of CAMB9

(Lewis et al., 2000; Lewis & Challinor, 2002; Howlett et al., 2012). To stay in

line with the main KiDS-1000 analysis (Joachimi et al., 2021; Asgari et al., 2021;

van den Busch et al., 2022), we assume a normal neutrino hierarchy, while also

assuming a fixed sum of neutrino masses of ∑mν = 0.06 eV/c2.

We compute the non-linear matter power spectrum via a non-perturbative

model, HMCODE-2016 (Mead et al., 2015, 2016). Although updated iterations

of this model exist (Mead et al., 2021), we limit ourselves to HMCODE-2016,

so our model remains comparable to the KiDS-1000 cosmic shear analysis. HM-

CODE uses a halo model approach to incorporate the effects of baryonic feedback

on the matter distribution. The main driving factor in this is the baryonic matter ex-

pelled by Active Galactic Nuclei (AGN). This suppresses the power at small scales,

i.e. large k, as a function of the amplitude of the halo mass-concentration relation,

Abary, and the halo bloating parameter, η0. We also fix the relation between these

two parameters to η0 = 0.98− 0.12Abary in accordance with Joudaki et al. (2018)

and Joachimi et al. (2021), and treat Abary as the only free parameter related to

baryonic feedback.

We note that this treatment may lead to systematic biases at small scales, as the

galaxies will be sampled from a matter power spectrum which is already modified

by baryonic feedback. It would be more physically accurate to sample the galaxies

from a matter power spectrum without baryonic non-linearities, and subsequently

adding a perturbation to the matter density contrast fields due to baryonic feedback

(similar to the approach used for the intrinsic alignments described in Section 3.2.5).

Nevertheless, we do not expect this to cause a large discrepancy for the scales which

we are probing in the cosmic shear signal (ℓ < 1500). Field-level implementations

of baryonic feedback already exist (Schneider & Teyssier, 2015; Schneider et al.,

2019, 2022), and they would constitute interesting avenues for future extensions to

9Code for Anisotropies in the Microwave Background; https://camb.info

https://camb.info
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Figure 3.4: Three-dimensional diagram showing an octant of 19 concentric shells as they
are simulated within KIDS-SBI and GLASS. The radius of each shell is given
by its mean redshift.

KIDS-SBI.

3.2.2 Working on the Sphere

Astronomical observations are typically projected onto a two-dimensional surface

of a sphere with the observer at its centre. Since this is the case for large surveys

such as KiDS, most observational biases and some systematics depend on the spher-

ical coordinates on the sky. For this reason, it is natural to express our model using

the same geometry.

The KIDS-SBI forward simulations use GLASS (Tessore et al., 2023)
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to model the underlying large-scale structure. Within GLASS, we choose to

model large-scale structure through log-normal random matter fields within non-

overlapping concentric shells centred at the observer. Therefore, a given shell is a

comoving volume which spans the full sky and has a finite width along the line-

of-sight from one redshift, zi, to another, zi+1, such that i ∈ {1,2,3, ...,Nshells}. We

define the matter weight function W (i)(z) describing the distribution along the line-

of-sight of the comoving volume spanned by a given shell as (Tessore et al., 2023),

W (i)(z;ΘΘΘ) =

 f 2
k (z;ΘΘΘ)/E(z;ΘΘΘ), if zi ≤ z < zi+1,

0, otherwise,
(3.2)

where E(z;ΘΘΘ) is the dimensionless Hubble function and fk(z;ΘΘΘ) is the transverse

comoving distance for a given redshift and cosmology, which is defined as

fk(z;ΘΘΘ) =



c
H0

√
Ωk

sinh
(√

ΩkH0
c χ(z;ΘΘΘ)

)
, if Ωk > 0,

χ(z;ΘΘΘ), if Ωk = 0,

c
H0
√

|Ωk|
sin
(√

|Ωk|H0
c χ(z;ΘΘΘ)

)
, if Ωk < 0,

(3.3)

where H0 is the Hubble constant, Ωk is the curvature density parameter and c is the

speed of light in a vacuum.

A given shell has to cover at least approximately 100Mpc of comoving dis-

tance along the line-of-sight for log-normal random fields to be an accurate enough

representation of the distribution of large-scale structure (Xavier et al., 2016; Hall &

Taylor, 2022; Tessore et al., 2023). Otherwise, discretisation effects would smooth

away large-scale structure (Tessore et al., 2023). Additionally, one needs to be

mindful of computational resources, because the computation of angular power

spectra for the correlation between the matter fields within each shell scales as

Nshells(Nshells + 1)/2. Simultaneously, the simulations’ run-time for a given set of

cosmological parameters scales linearly with Nshells and the memory requirements

by 2Nshells (as we need to store a matter field map and a convergence map per shell).

To balance all of these factors, we aim to have as many shells along the line-of-
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sight as computationally feasible, while also choosing widths which come as close

as possible to the 100Mpc limit.

When choosing the number of shells and their widths in redshift, it is

important to consider that the accuracy of the weak gravitational lensing sig-

nal is more sensitive to the resolution a low redshifts than at high redshifts.

The lensing signal in a given matter shells depends on the weighted sum

of the matter fields of the shells with lower redshifts. Since shells at low

redshifts are along the line-of-sight of more shells than high-redshift shells,

prioritising thinner shells at low redshifts helps to reduce discretisation ef-

fects. We find that the following set of redshift limits for 19 shells are suf-

ficient for the resolution needed for KiDS-1000, while still being efficient:

{0, 0.04, 0.08, 0.12, 0.16, 0.2, 0.27, 0.34, 0.42, 0.5, 0.58, 0.66, 0.75, 0.88, 1.03,

1.19, 1.36, 1.55, 1.76, 2} (see Figure 3.2).

3.2.3 Non-Limber Projection

Although the three-dimensional matter power spectrum characterises all cosmolog-

ical dependence of the matter fields in our simulation, it does not take into con-

sideration the geometry of the different volumes considered in Section 3.2.2. To

determine the correlations between the matter fields of comoving spherical shells,

we define the two-dimensional angular matter power spectra for a given cosmology,

ΘΘΘ, and a given shell combination (i j) as follows

C(i j)
δδ ,ℓ(ΘΘΘ) = ⟨δ̃ (i)

ℓm(ΘΘΘ) δ̃
( j)∗
ℓm (ΘΘΘ)⟩, (3.4)

where δ̃
(i)
ℓm(ΘΘΘ) represents the harmonic coefficients defined through a spherical har-

monic transform of the projection of the spin-0 matter field, δ (i), as given by (Zal-

darriaga & Seljak, 1997; Reinecke, 2011),

δ̃
(i)
ℓm(ΘΘΘ) =

∫
d2

θθθ δ
(i)(θθθ ;ΘΘΘ)0Y ∗

ℓm(θθθ), (3.5)

where 0Yℓm(θθθ) are the spherical harmonics for a spin value of 0 as a function of the

two-dimensional spatial sky position θθθ . The projected matter field, δ (i)(θθθ ;ΘΘΘ), can
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in turn be defined with respect to the underlying three-dimensional matter overden-

sity field, δ (θθθ ,z;ΘΘΘ), as

δ
(i)(θθθ ;ΘΘΘ) = ∑

ℓm
δ̃
(i)
ℓm(ΘΘΘ)0Yℓm(θθθ) =

∫
dzW (i)(z;ΘΘΘ)δ (θθθ ,z;ΘΘΘ), (3.6)

where W (i)(z;ΘΘΘ) is the weight function of the given shell as defined in Equa-

tion (3.2).

The three-dimensional matter overdensity field’s cosmology dependence can

be quantified as follows

⟨δ (kkk,z;ΘΘΘ)δ
∗(kkk′,z′;ΘΘΘ)⟩= (2π)3

δD(kkk− kkk′)Pδ ,nl(k,z,z
′;ΘΘΘ), (3.7)

where δ (kkk,z;ΘΘΘ) is the two-dimensional Fourier transform of the two-dimensional

matter overdensity field at z, δ (θθθ ,z, ;ΘΘΘ) and δD(kkk− kkk′) is the Dirac delta function.

If we combine the relations in Equations (3.4) to (3.7) and, for the sake of

simplicity, assume that Ωk = 0, i.e. fk(z;ΘΘΘ) = χ(z;ΘΘΘ), we can characterise the

cosmology dependence of C(i j)
δδ

(ℓ;ΘΘΘ) directly with respect to the three-dimensional

matter power spectrum, Pδ ,nl(k,z,z′;ΘΘΘ), using the following relation

C(i j)
δδ

(ℓ;ΘΘΘ) =
2
π

∫
dχ W (i)(z[χ];ΘΘΘ)

∫
dχ

′W ( j)(z′[χ];ΘΘΘ)∫
dk k2 Pδ ,nl(k,z[χ],z

′[χ];ΘΘΘ) jℓ(kχ) jℓ(kχ
′), (3.8)

where χ ′ ≡ z[χ ′], jℓ(kχ) are spherical Bessel functions of rank ℓ, and ℓ ∈ Z0+. We

can simplify Equation (3.8) by making the geometric approximation, i.e. taking the

geometric mean of two equal-time power spectra (Castro et al., 2005; Kitching &

Heavens, 2017; Kilbinger et al., 2017), such that

Pδ ,nl(k,z[χ],z
′[χ ′];ΘΘΘ) =

√
Pδ ,nl(k,z[χ];ΘΘΘ)Pδ ,nl(k,z′[χ ′];ΘΘΘ), (3.9)

which has been shown to be an accurate approximation both in the linear and non-

linear regimes (Kitching & Heavens, 2017).
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At this point, it is common to also make the so-called Limber approxima-

tion (Limber, 1953; Kaiser, 1992) which consists in a Taylor expansion around the

approximate maximum of the Bessel function at kχ = ℓ+ 1/2, and only consid-

ering the first-order term. This approximation is reasonably accurate in the auto-

correlations, C(ii)
δδ

(ℓ;ΘΘΘ), but depending on the thickness of the shells, the Limber

approximation can lead to substantial biases, especially, at large scales. How-

ever, when making the Limber approximation, all off-diagonal angular power spec-

tra, C(i j)
δδ

, where i ̸= j, will be zero as long as their associated weight functions,

W (i)(z[χ];ΘΘΘ), are non-overlapping, as is the case for the weights constructed in

Equation (3.2). This can be seen by looking at the full Taylor expansion of Equa-

tion (3.8) as given by (LoVerde & Afshordi, 2008)

C(i j)
δδ

(ℓ) =
∫ dχ

χ
W (i)(z[χ])W ( j)(z[χ])Pδ ,nl

(
ℓ+1/2

χ
,z[χ]

)
{

1− 1
(ℓ+1/2)2

[
χ2

2

(
W (i)′′(z[χ])
W (i)(z[χ])

+
W ( j)′′(z[χ])
W ( j)(z[χ])

)

+
χ3

6

(
W (i)′′′(z[χ])
W (i)(z[χ])

+
W ( j)′′′(z[χ])
W ( j)(z[χ])

)]
+O

(
[ℓ+1/2]−4

)}
, (3.10)

where each apostrophe, ′, denotes a partial derivative with respect to χ , i.e. ∂/∂ χ ,

while we also omit the explicit cosmological dependence of the power spectrum and

the weight functions here for the sake of clarity. The non-Limber integral therefore

also contributes to the autocorrelations, where |i− j| = 0, particularly for small ℓ.

If not considered this can induce a higher than percentage-level bias in the angular

power spectra of the shells which could significantly bias cosmological constraints

from KiDS-1000. At the same time, we find that for the cross-correlations of adja-

cent shells, such that |i− j|= 1, the angular power can be of the order of 10−1C(ii)
δδ

or

less. In this case, the simulated δ (i)(θθθ ;Θ) would have a percentage-level bias, while

being void of any large-scale structure along the line-of-sight beyond the scales of

individual shells. To avoid this, we choose to calculate the full non-Limber pro-

jection as given by Equation (3.8). The correlations between shell pairs which are
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not immediate neighbours, i.e. |i− j| > 1, contribute less than 0.1% to the overall

angular power of a shell, so their effect is undetectable for KiDS.

Calculating the full non-Limber integral is a computationally expensive en-

deavour as it involves three numerical integrals over highly oscillatory Bessel func-

tions. To address this, we present the LEVIN module10. This is a novel Python

module written in C++ which implements the Levin integration method for oscilla-

tory functions (Levin, 1996) in the context of non-Limber integrals for weak lensing

and galaxy clustering.

The module allows one to divide the domain of the angular power spectra into

three regions: a non-Limber domain, a second-order extended Limber domain and

a Limber domain. In this work, we choose to split the calculation of C(i j)
δδ

(ℓ) into

two domains: non-Limber (1 < ℓ ≤ ℓmax,nL) and second-order extended Limber

(ℓmax,nL < ℓ≤ 30,000). Over the former domain, LEVIN numerically integrates the

expression shown in Equation (3.8) for the given matter power spectrum and the

weights. Over the latter domain, we perform the numerical integration of Equa-

tion (3.10) up to the second-order term in (ℓ+ 1/2)−1. This reduces the computa-

tional resources needed for the integration without any substantial loss of accuracy

as long as ℓmax,nL is sufficiently large, since the residuals scale with (ℓ+ 1/2)−4

(LoVerde & Afshordi, 2008). With the shells shown in Figure 3.2 weighted with

Equation (3.2), we obtain angular power spectra, C(i j)
δδ

(ℓ;ΘΘΘ), shown in Figure 3.5.

With this configuration, we find that we can obtain computationally efficient

and accurate (consistent with CAMB within 0.1%) angular power spectra which

describe the correlations between the matter fields within each spherical shell of the

simulation. This is in line with testing conducted on the LEVIN module in previ-

ous applications (Zieser & Merkel, 2016; Spurio Mancini et al., 2018a,b; Baleato

Lizancos & White, 2023).

3.2.4 Log-normal Matter Field Simulations

With the input angular power spectra for a given cosmology computed, the next step

in the forward simulations involves sampling random matter fields consistent with

10LEVIN; https://github.com/rreischke/nonLimber_matter_shells

https://github.com/rreischke/nonLimber_matter_shells
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Figure 3.5: Plot of the two-dimensional angular matter power spectra, C(i j)
δδ

(ℓ), projected
with LEVIN describing the correlations between the large-scale structure within
a set of 19 concentric shells spaced along the line-of-sight as shown in Fig-
ure 3.2. The left panel shows the autocorrelations of all shells, i.e. |i− j| = 0.
The right panel shows the correlations of each shell with its nearest neighbour,
i.e. |i− j| = 1 (|i− j| > 1 are not shown as they do not have a large effect on
matter fields within each shell, see Tessore et al. 2023). The colour of each
line is given by the mean redshift of the ith bin, z(i). The underlying linear
three-dimensional matter power spectrum is based on flat ΛCDM assuming
Ωc = 0.05, Ωb = 0.28, σ8 = 0.79, S8 = 0.84 and H0 = 67 km s−1 Mpc−1 calcu-
lated using CAMB (Lewis et al., 2000; Lewis & Challinor, 2002; Howlett et al.,
2012), while the non-linear contribution is calculated using HMCODE-2016
(Mead et al., 2015, 2016) assuming Abary = 3.1. The non-Limber projection
done by LEVIN assumes ℓmax,nL = 1200 which causes the C(i j)

δδ
with |i− j|> 0

go to a value of zero for ℓ > ℓmax,nL.

these correlations. For this, we use GLASS(Tessore et al. 2023). This framework

allows one to create efficient and accurate random field simulations of large-scale

structure matter fields as well as the associated weak gravitational lensing signals.

Within the GLASS suite, many different choices can be made, while it also al-

lows one to sample the angular positions, redshifts, shapes and shears of galaxies.

Nevertheless, in this analysis, we only choose to use it to simulate the underlying

matter overdensity fields, δ (i)(θθθ ;ΘΘΘ), as well as the associated convergence fields

for each shell, κ(i)(θθθ ;ΘΘΘ). These are then integrated along the line-of-sight to give
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the convergence field for a source within a given shell, κ(i).

Once the angular correlation functions, C(i j)
δδ

(ℓ;ΘΘΘ), are defined, they can be

transformed into spatial coordinates, C(i j)
δδ

(θ ;ΘΘΘ),, so one can now apply spatial

transformations to the field. In general, we can transform any field, X(θθθ), into a

transformed field, Y (θθθ) = f [X(θθθ)]. Since we are interested in sampling cosmo-

logical fields describing large-scale structure, it is important to ensure that they are

consistent with the cosmological principle. Therefore, any field, δ , must be ho-

mogeneous, i.e. invariant under rotational transformations. One such type of field

is a Gaussian field which by construction is homogeneous and therefore has the

same mean and variance at all points in space. In addition, Gaussian fields have

the advantage that they are easy to sample and they can be sampled recursively for

each shell for computational efficiency (see Tessore et al. 2023 for a more detailed

description).

However, Gaussian fields do not capture the full complexity of large-scale

structure as by definition they have zero skewness or kurtosis or beyond, i.e. they

are constructed such that they can be fully characterised with only a mean and a

variance. However, realistic matter overdensity fields have higher-order variations

as filamentary structure and voids tend to appear under the influence of gravity and

baryonic effects, even if the seeds that originated the overdensities were Gaussian

distributed.

It has been found that a good approximation to such fields is a log-normally

distributed random field (which can be derived from a Gaussian random field). In

fact, log-normal fields are even able to produce reasonable approximations to the

three-point and four-point statistics measured from N-body simulations (Hall &

Taylor, 2022; Piras et al., 2023). For this reason, log-normal random fields are a

common approximation used for matter overdensity fields (Coles & Jones, 1991;

Böhm et al., 2017; Abramo et al., 2016, 2022) as well as for convergence fields

(Hilbert et al., 2011; Clerkin et al., 2017; Giocoli et al., 2017; Gatti et al., 2020).

Consequently, we are interested in sampling log-normal fields to model the

matter overdensity fields in each shell from Gaussian random fields. In theory, one
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could obtain these by taking the angular power spectra of the shells and assuming

that they describe the correlations between log-normal fields, δ
(i)
log(θθθ ;ΘΘΘ), as follows

⟨δ (i)
log(θθθ ;ΘΘΘ)δ

( j)∗
log (θθθ ;ΘΘΘ)⟩=C(i j)

δδ
(θ ;ΘΘΘ). (3.11)

If we then define the angular power spectrum of a Gaussian random field,

G(i j)
δδ

(θ ;ΘΘΘ), as follows

⟨δ (i)
G (θθθ ;ΘΘΘ)δ

( j)∗
G (θθθ ;ΘΘΘ)⟩= G(i j)

δδ
(θ ;ΘΘΘ). (3.12)

By defining the mean and the variance for G(i j)
δδ

(θ ;ΘΘΘ), one can then sam-

ple δ
(i)
G (θθθ ;ΘΘΘ) for each shell. To achieve this with numerical methods, the two-

dimensional spherical shell of each layer is discretised using HEALPIX pixels

(Górski et al., 2005). This means that θθθ is discretised such that it can be mapped

to a linearised variable given by θm where m ∈ {1,2,3, ...,12N2
side} and Nside is the

HEALPIX resolution parameter. To obtain the final matter overdensity fields, we

use the following expression (Coles & Jones, 1991; Kayo et al., 2001; Hilbert et al.,

2011; Xavier et al., 2016),

δ
(i)
log(θm;ΘΘΘ) = eδ

(i)
G (θm;ΘΘΘ)−λ , (3.13)

where λ is the shift of the log-normal distribution which is assumed to be λ = 1 for

matter fields.

In practice, the simulations do not actually calculate these quantities in the or-

der that has been laid out here. In reality, in the numerical calculations, it is not pos-

sible to sum/integrate over an infinite range of angular scales, ℓ. When instead set-

ting a maximum angular scale, ℓmax, it is possible that with G(i j)
δδ

(ℓ > ℓmax;ΘΘΘ) = 0,

one can still obtain |C(i j)
δδ

(ℓ > ℓmax;ΘΘΘ)|> 0 which can bias the sampled log-normal

fields (Xavier et al., 2016). To avoid this and make the sampling more efficient,

within GLASS, an initial G(i j)
δδ

(ℓ;ΘΘΘ) is guessed which is transformed using the pre-

viously described prescription. The associated log-normal angular power spectrum

is then compared to the given C(i j)
δδ

(ℓ;ΘΘΘ), which gives a residual. Subsequently,
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the guessed G(i j)
δδ

(ℓ;ΘΘΘ) is updated using the Gauss-Newton algorithm, such that the

residual is minimised between iterations and the result converges to an accurate

G(i j)
δδ

(ℓ;ΘΘΘ) over a finite ℓ range. For more details about this calculation, see Tessore

et al. 2023.

The layers of concentric log-normal matter overdensity fields within each shell

give a full description of the large-scale structure. The resolution of this structure

will of course be limited by the size of the shells along the line-of-sight, while being

limited by the resolution of the discretised two-dimensional pixels on the sphere.

However, as discussed with regards to the resolution of shells in Section 3.2.2, if

one chooses sufficiently large ℓmax up to which the input angular power spectra are

calculated, one can accurately sample δ
(i)
log(θm;ΘΘΘ) up to an Nside ∼ 0.5ℓmax (Leistedt

et al., 2013; Alonso et al., 2019).

As we intend to make use of these simulations for weak gravitational lens-

ing, the next step in the forward simulations is to model how the image of galactic

sources within a given shell will be distorted by weak gravitational lensing due to

the matter overdensities the light encounters along the line-of-sight to the observer.

Here, the geometry of the simulations aids us again, since the concentric volumes

in comoving distance that each shell makes up intrinsically allow one to trace all

possible light-cones emanating from the observer.

We start from the definition of the convergence for a source located at θθθ and z

along a continuous line-of-sight under the Born approximation (Schneider, 2005),

κ(θθθ ,z;ΘΘΘ)=
3Ωm

2

∫ z

0
dz′

fk(z′;ΘΘΘ) [fk(z′;ΘΘΘ)− fk(z;ΘΘΘ)]

fk(z;ΘΘΘ)

1+ z′

E(z′;ΘΘΘ)
δ (θθθ ,z′;ΘΘΘ), (3.14)

where Ωm is the matter density fraction at z= 0, and Ωm ∈ΘΘΘ. We then discretise the

continuous two-dimensional matter overdensity field along over θθθ using HEALPIX

pixels, while also discretising along the line-of-sight using Equation (3.6) and defin-

ing a mean redshift, z(i), for a given weighted shell as follows
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z(i)(ΘΘΘ) =

∫
dzzW(i)(z;ΘΘΘ)∫
dzW(i)(z);ΘΘΘ

. (3.15)

If we then assume that the integral over the geometric and the weight factors in

Equation (3.14) is approximately equal to the factors evaluated at the mean of each

weighted shell, z(i), we can rewrite Equation (3.14) as follows

κ
(i)(θm;ΘΘΘ) =

3Ωm

2

i−1

∑
j=0

fk(z( j);ΘΘΘ) [ fk(z( j);ΘΘΘ)− fk(z(i);ΘΘΘ)]

fk(z(i);ΘΘΘ)

1+ z( j)

E(z( j);ΘΘΘ)
w( j)(z( j);ΘΘΘ)δ

( j)(θm;ΘΘΘ), (3.16)

where w( j)(z( j);ΘΘΘ) is a lensing weight defined as

w( j)(z( j);ΘΘΘ) = [1/W( j)(z( j);ΘΘΘ)]
∫

dzW( j)(z;ΘΘΘ). (3.17)

From now on we take δ ( j)(θm;ΘΘΘ) ≡ δ
( j)
log (θm;ΘΘΘ). To accelerate this calculation

within GLASS, it makes use of the fact that for all Robertson-Walker space-times,

transverse comoving distances will scale in such a way that one can write down a

recurrence relation from one interval to the next along the line-of-sight (Schneider,

2016). This gives a recurrence relation for the convergence field, κ(i), within shells

where i ≥ 2, which only depends on κ(i−1), κ(i−2) and δ (i−1) (see Tessore et al.

2023 for details).

Such a relation allows one to calculate the convergence fields for all shells,

while only holding three fields in memory at a given time. This greatly reduces

the amount of computational resources needed in order to create the large amount

of realisations at different cosmologies, ΘΘΘ, needed for this analysis. Additionally,

we now have all the ingredients to sample galaxies and to shear their shapes, while

simultaneously having the flexibility to add any field-level systematics which may

be relevant.
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3.2.5 Intrinsic Alignments: Non-Linear Alignment Model

An important effect to consider when modelling weak gravitational lensing is intrin-

sic alignments (IAs). This refers to the fact that correlations between source galaxy

shapes in different parts of the sky may not only be caused by weak gravitational

lensing due to dark matter in the foreground. This happens due to two local pro-

cesses which occurs irrespectively of weak gravitational lensing: tidal alignments

and tidal torquing. Tidal alignments occur when the gravitational forces from neigh-

bouring matter distributions cause the galaxies to align with the surrounding matter

density field. This alignment leads to a coherent stretching or compression of the

galaxy shapes as function of the local matter overdensity field. Hence, he intrinsic

ellipticities of source galaxies are systematically aligned with the underlying large-

scale structure within which they form. Thus, the measured cosmic shear signal will

be biased by these intrinsic alignments (Heavens et al., 2000a; King & Schneider,

2002; Heymans & Heavens, 2003; Bridle & King, 2007).

To model this effect, we follow the prescription set out in Tessore et al. (2023).

In this prescription, for a given intrinsic alignment model, we define an associated

effective convergence field, κ
(i)
IA . This κ

(i)
IA is a useful construct which describes the

contribution to the observed weak lensing signal from IA under the Born approxi-

mation. Alternatively, an IA model could also directly be implemented into the dark

matter distribution of the matter fields which could an interesting avenue for future

work.

Based on the fact that for the IA model we take into consideration κ
(i)
IA ∝ δ (i),

we can assume that, for a given shell, this field can be added in a linear fashion to

the underlying convergence field due to weak lensing, as given by

κ
(i)(θm;ΘΘΘ)→ κ

(i)(θm;ΘΘΘ)+κ
(i)
IA (θm;ΘΘΘ). (3.18)

For simplicity and consistency with typical modelling assumptions in weak lensing

surveys such as KiDS-1000, we choose to model κ
(i)
IA with the Non-Linear Align-

ment (NLA) model (Catelan et al., 2001; Hirata et al., 2004; Bridle & King, 2007).

The NLA model assumes that the bias in the shear signal from IAs is linearly de-



3.2. Forward Simulations 166

pendent on the projected local tidal field. The “non-linear” part of the NLA model

then simply refers to the fact that it has been found that the modelling of IAs is

more accurate when modelling the underlying large-scale structure using a non-

linear matter power spectrum, rather than a linear one (Bridle & King 2007, similar

to our approach described in Section 3.2.1). This means that it is also proportional

to the local matter overdensity field, which is given by (Hirata et al., 2004),

κ
(i)
IA (θm;ΘΘΘ) =−AIA

C1 Ωm ρcr(z
(i);ΘΘΘ)

D(z(i);ΘΘΘ)
δ
(i)(θm;ΘΘΘ), (3.19)

where AIA is the intrinsic alignments amplitude (which we are treating as a nuisance

parameter that is also sampled, see Section 3.3), C1 is a normalisation constant

which we set to C1 = 5× 10−14h−2
0 M−1

⊙ Mpc3 in accordance with the IA measure-

ments at low redshifts by SuperCOSMOS (Brown et al., 2002), ρcr(z
(i);ΘΘΘ) is the

mean critical matter density as a function of redshift and D(z(i);ΘΘΘ) is the linear

growth factor normalised to be unity at z = 0. Note that in Equation (3.19), we do

not consider an explicit redshift dependence which is often expressed as a power-

law term (Joachimi et al., 2011a). We omit this term, as it not considered in the

fiducial KiDS-1000 analysis (Asgari et al., 2021; van den Busch et al., 2022), and it

has been found that at least for z < 1, the IA signals do not vary largely with redshift

(Fortuna et al., 2021).

Nevertheless, the NLA model still comes with some caveats. Mainly, it ne-

glects non-linearities which may not be captured in the underlying matter power

spectrum, such as source density weighing. The former can in fact produce a signal

in the shape measurements comparable to the correction due to non-linear struc-

ture growth (Krause et al., 2016). Despite these limitations, the NLA model has

been found to be accurate enough to model the IA signal seen by past and current

weak lensing surveys (Joachimi et al., 2011a; Blazek et al., 2011; Heymans et al.,

2013; Krause et al., 2016; Hilbert et al., 2017), including KiDS-1000 (Fortuna et al.,

2021).
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3.2.6 Galaxy Positions and Redshifts

With the cosmological dependence of the underlying large-scale structure charac-

terised and astrophysical effects such as intrinsic alignments and baryonic feedback

included, the forward simulations still need to include observational biases from

our instruments. We choose to apply these on the level of galaxies, i.e. by biasing

the sampled galaxy positions, redshifts and shapes/shears in accordance with our

models for the observational systematic effects.

When sampling the galaxies’ positions on the sky, we take into consideration

the survey footprint, Ωsurvey, the galaxy number density which the survey can ob-

serve, ngal, and the variability in the latter as a function of redshift and observational

depth across the sky, i.e. as a function of the local observing conditions. When sam-

pling the galaxies’ redshifts, we consider the redshift distributions calibrated from

photometry for a given survey, n(z). Lastly, when determining the observed galaxy

shapes, we consider the intrinsic ellipticity dispersion of the galaxies, σε , the mul-

tiplicative and additive shear bias, while also including the effects caused by the

variation in the point spread function of the instrument as a function of the position

in the sky.

Since we are interested in simulating a photometric survey, we must model

the resolution along the line-of-sight realistically. This means that rather than mod-

elling large-scale structure observables across Nshells concentric shells, they ought

to be modelled across Ntomo tomographic bins. The tomographic bins of a given

survey are defined by finite usually non-overlapping domains in photometric red-

shift, zph, in which all observed galaxies are grouped, such that zp ≤ zph < zp+1,

p ∈ {1,2,3, ...,Ntomo}11. The measured photometric redshift of a galaxy does not

necessarily agree with its true/spectroscopic redshift, z. This means that galaxies

which are grouped within a given photometric redshift bin, p, may not actually be

located in this redshift range. To account for this, one can characterise a conditional

redshift distribution for each tomographic bin P(z|zph) by mapping the measured

zph to known spectroscopic redshift measurements which have a comparatively low

11Note that we use the indices p and q for tomographic bins and the indices i and j for underlying
shells.
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Bin ngal σ ε/
√

2 angal bngal aσε
bσε

[arcmin−2] ×103

S1 0.62 0.27 -0.035 0.72 1.81 0.267
S2 1.18 0.26 -0.042 1.30 1.30 0.257
S3 1.85 0.28 -0.243 2.58 -0.86 0.280
S4 1.26 0.25 -0.250 2.01 -0.62 0.255
S5 1.31 0.27 -0.416 2.56 2.39 0.261

Table 3.1: Parameters used to sample galaxies and their shapes in line with the expectations
for KiDS DR4 for each tomographic bin (from S1 to S5). ngal is the mean galaxy
number density for a given tomographic bin, σ ε/

√
2 is the mean per-component

shape dispersion, angal and bngal are the slope and y-intercept, respectively, for the
linear interpolation of the galaxy density as a function of the root-mean-square of
the background noise in the KiDS catalogue, σrms, according to Equation (3.30),
while aσε

and bσε
are the parameters to linearly interpolate σε from σrms, ac-

cording to Equation (3.31).

bias in the redshift estimate (Hildebrandt et al., 2021; van den Busch et al., 2022).

Therefore, a given galaxy is in an associated pixel, m, shell, i, and tomographic bin,

p. The probability of the galaxy being in tomographic bin, p, while it is sampled in

shell, i, then depends on P(z|zph).

In line with the KiDS-1000 analysis, we define the galaxy number density as

follows

n(p)
gal ≡

1
|Ωsurvey|

[
(1+M(p)

)∑i∈(p)wi

]2

∑i∈(p)

(
1+M(p)

)2
w2

i

, (3.20)

where |Ωsurvey| is the effective area covered by the survey footprint, M(p) is the

mean multiplicative shear bias in tomographic bin p as calibrated in (Giblin et al.,

2021), and wi is the LENSFIT weight for a given galaxy i. Similarly, we define the

galaxy intrinsic ellipticity dispersion, σε , within a given tomographic bin as follows

σ
(p)2
ε ≡

(
1+M(p)

)−2 ∑i∈(p)w2
i

(
ε2

obs,i,1 + ε2
obs,i,2

)
∑i∈(p)w2

i
, (3.21)

where εobs,1 and iεobs,2 are the two components of the observed galaxy ellipticity.

Applying Equations (3.20) and (3.21) to KiDS DR4, we obtain the values shown in

Table 3.1.
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Figure 3.6: Plot of the distributions for each tomographic bin (S1 to S5) from which the
shear bias parameters from KiDS-1000 (Giblin et al., 2021) shown in Equa-
tion (3.29) are sampled. The first panel from the left shows the multiplicative
shear bias, M(p). The second and third panel show the real and imaginary part
of the additive shear bias, c(p)

1 and c(p)
2 , respectively. The fourth and fifth panel

show the real and imaginary part of the amplitude of the shear bias due to vari-
ations in the point-spread function, α

(p)
1 and α

(p)
2 , respectively.

Although it does not have detectable effects on the cosmic shear signal, the

KIDS-SBI forward simulations sample galaxy positions such that they trace the un-

derlying matter fields, so spatially varying systematics may be accurately applied.

Using the SALMO12 framework (Joachimi et al., 2021) for simulating galaxy cat-

alogues, we Poisson-sample galaxies within each HEALPIX pixel, m, on the sky

using the following expectation for the galaxy counts

⟨N(i)(p)
m ⟩(ΘΘΘ) = wm(Ωsurvey)

[
1+b(i)δ (i)(θm;ΘΘΘ)

]
Pm(p|i)n(p)

gal,m Apix,m, (3.22)

where wm(Ωsurvey) is the weight for a given pixel m which we take to be unity if

a pixel is within the survey’s mask/footprint, Ωsurvey, and zero if it is not, b(i) is

galaxy bias parameter within a given shell which we assume to be b(i) = 1∀i for

the purposes of this cosmic shear analysis, Pm(p|i) is the probability of a galaxy

in pixel m being detected within tomographic bin p while being within shell i (i.e.

a discretised version of Pm(z|zph)), n(p)
gal,m is the observed galaxy number per unit

area for a given tomographic bin p and a given pixel m (here the pixel dependence

12Speedy Acquisition for Lensing and Matter Observables; https://github.com/
Linc-tw/salmo

https://github.com/Linc-tw/salmo
https://github.com/Linc-tw/salmo
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accounts for the spatial variability of the detection limit of galaxies as a function of

observing conditions, the number of exposures, etc.; see Section 3.2.8), and Apix,m

is the area of pixel m. As n(p)
gal,m changes due to variations in observational depth,

it is more likely/unlikely to observe high-redshift galaxies. Hence, a change in

depth from one pixel to the next can change the observed redshift distribution (see

Section 3.2.8).

Taking wm(Ωsurvey), Pm(p|i) and n(p)
gal,m from the photometric survey’s mea-

surements, we can Poisson sample N(i)(p)
m (ΘΘΘ) given the expectation value shown

in Equation (3.22) from which we can get the expected number of galaxy counts

within each pixel of a tomographic bin p by taking

N(p)
m (ΘΘΘ) =

Nshells

∑
i=1

N(i)(p)
m (ΘΘΘ). (3.23)

With that, we then randomly sample each galaxy’s right ascension and declination

within each pixel m assuming a uniform distribution. This means that below the

scales of pixels, the simulations do not have any information on galaxy clustering.

To sample each galaxy’s redshift, we can use the fact that we know exactly

how many galaxies are in each shell i for a given tomographic bin p and pixel

m from N(i)(p)
m (ΘΘΘ). We can therefore randomly assign an index i and p to each

sampled galaxy in accordance with that number. We can then randomly sample a

specific zspec for each galaxy by assuming that the galaxies are uniformly distributed

within a given shell. Again, this means that weak lensing and galaxy clustering

measurements from the simulated galaxies do not contain any information about

the large-scale structure along the line-of-sight below the scales of shells.

3.2.7 Galaxy Shears

In order to determine the galaxy shears, we begin by assigning intrinsic ellipticities.

We define a given galaxy’s shape through a complex ellipticity, ε , and any galaxy

ellipticity in this work as follows

ε = ε1 + iε2, (3.24)
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where i ≡
√
−1. The intrinsic ε1 and ε2 of each galaxy are then sampled within

SALMO as two independent normal random variates with zero mean and a variance

equal to σ
(p)2
ε,m . As with the galaxy density, n(p)

gal,m, the shape dispersion, σ
(p)
ε,m, can

also vary with tomographic bin and as a function of the position on the sky due to

the effects of the spatial variability of observational depth. See Section 3.2.8 for

a more detailed discussion. The ellipticity of each source galaxy is then altered

through weak gravitational lensing by the matter along the line-of-sight. The exact

shape distortion is given by (Seitz & Schneider, 1996; Hu, 2000),

εlensed(ΘΘΘ) =
εint +g(ΘΘΘ)

1+g∗(ΘΘΘ)εint
, (3.25)

where εlensed(ΘΘΘ) is the lensed galaxy ellipticity, εint is the intrinsic galaxy ellipticity

and g(ΘΘΘ) is the reduced shear (g ∈ C) which is given by

g(ΘΘΘ) =
γ(ΘΘΘ)

1−κ(ΘΘΘ)
, (3.26)

where γ(ΘΘΘ) is the shear factor (γ ∈ C). The use of Equation (3.25) is an extension

to the KiDS-1000 analysis which assumed the reduced shear approximation, i.e.

εlensed ≈ εint+g. In any case, this should cause a negligible change in the measured

shear considering the sensitivity of KiDS-1000 (Joachimi et al., 2021). To calculate

the shear field, it is useful to decompose the spin-0 convergence field into spherical

harmonics as follows

κ
(i)
ℓm(ΘΘΘ) =

∫
ddd2

θθθ κ
(i)(θθθ ;ΘΘΘ)0Y ∗

ℓm(θθθ), (3.27)

where κ
(i)
ℓm(ΘΘΘ) are the harmonic coefficients of the convergence field of a given

shell i. One can then use the following relation to define the shear field’s harmonic

coefficients, γ
(i)
ℓm, given by (Tessore et al., 2023),

γ
(i)
ℓm(ΘΘΘ) =−

(
(ℓ+2)(ℓ−1)

ℓ(ℓ+1)

)1/2

κ
(i)
ℓm(ΘΘΘ). (3.28)
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The γ
(i)
ℓm(ΘΘΘ) coefficients can then be used to calculate the spin-2 discrete shear field,

γ(i)(θm,ΘΘΘ). Having defined the effective κ(i)(θm,ΘΘΘ) in Sections 3.2.4 and 3.2.5,

while also defining γ(i)(θm,ΘΘΘ), we can assign a value of κ and γ = γ1 + iγ2 to each

galaxy sampled according to the procedure described in Section 3.2.6. This is done

by taking the value of κ(i)(θm,ΘΘΘ) and γ(i)(θm,ΘΘΘ) within the shell i and pixel m

in which a given galaxy is located. Between neighbouring pixels, the values of

κ(i)(θm,ΘΘΘ) and γ(i)(θm,ΘΘΘ) are linearly interpolated. We then use Equation (3.26)

to calculate the associated reduced shear, g(ΘΘΘ), as well as the lensed ellipticity,

εlensed(ΘΘΘ), by combining g with the intrinsic ellipticity using Equation (3.25).

However, this lensed ellipticity, εlensed(ΘΘΘ), is not the observed shape measure-

ment in a weak gravitational lensing survey such as KiDS-1000. Additionally, the

shape measurement may be distorted by instrumentational effects or shape mod-

elling inaccuracies. Some relevant effects are selection biases, noise biases from a

low signal-to-noise ratio, biases in the galaxy weights, artefacts, non-linear CCD

responses, asymmetries in the point spread function, etc. (see e.g. Mandelbaum

2018 for a review). To account for this, it is common to parametrically estimate any

residual systematics which may be affecting the shape measurements (Hildebrandt

et al., 2017, 2021; Zuntz et al., 2018; Giblin et al., 2021). Within the forward sim-

ulations, we use the first-order parametric expansion of the observed galaxy shapes

given by Heymans et al. (2006) as follows

ε
(p)
obs,i∈m =

(
1+M(p)

)
εlensed,i +α

(p)
εPSF,m +β

(p)
δεPSF,m + c(p)

m , (3.29)

where i is the index for a single galaxy within tomographic bin p and pixel m, M(p)

is the multiplicative shear bias as measured for tomographic bin p, α(p) gives the

fraction of the PSF ellipticity which remains in the shear estimator, εPSF(m) is the

local PSF measured within pixel m (see Figure 3.7 for a map of εPSF in KiDS-1000),

β (p) gives the amplitude of the shear bias due to residuals which are not taken into

account by the PSF model, δεPSF represents the residuals in question, and c(p) is

the additive shear bias within a given tomographic bin p. Note that spatially vary-
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ing multiplicative shear biases, M(p), can also arise, but previous work has found

that the mean bias across all positions is sufficient to accurately model the effect

(Kitching et al., 2019). In accordance with previous findings (Giblin et al., 2021),

we take β (p) = 0∀p. The amplitudes of the remaining systematics as calibrated by

Giblin et al. (2021) are shown in Figure 3.6. It becomes apparent that these effects

are relatively small which explains why only the multiplicative and additive bias is

taken into consideration in the modelling on the fiducial KiDS-1000 analysis (Giblin

et al., 2021; Joachimi et al., 2021; Asgari et al., 2021; Heymans et al., 2021). Ad-

ditionally, the measured values of M(p), α(p) and c(p) have associated uncertainties.

To take this uncertainty into account and make sure it is represented in the effective

likelihood, rather than using a fixed value, we randomly sample different values for

M(p), α(p) and c(p) for each realisation of the forward simulations from a normal

distribution as shown in Figure 3.6. Note that we do not explicitly marginalise over

these parameters, but as they are sampled randomly from predetermined probabil-

ity density distributions, so that their associated uncertainty is propagated into the

effective likelihood. This is similar to how the seed for each log-normal random

field and the random galaxy positions which populate the associated matter fields is

varied from one forward simulation to the next, so that cosmic variance enters the

effective likelihood as well.

As a result, for a given set cosmological parameters, ΘΘΘ, the KIDS-SBI forward

simulations produce a galaxy catalogue containing the galaxies’ position on the

sky, their spectroscopic redshift, the tomographic bin in which they are detected

and their observed ellipticities, while taking into account many relevant systematics

which are considered in the modelling of weak gravitational lensing measurements.

3.2.8 Variable Depth

As alluded to in Sections 3.2.6 and 3.2.7, when randomly sampling galaxies and

their intrinsic ellipticities, the parameters which charaterise the probability distribu-

tions depend on the location on the sky, i.e. the pixel m in question. Specifically,

the number of galaxies which is sampled (i.e. “observed”) within a given pixel de-

pends on the average galaxy density, n(p)
gal,m, measured within that pixel. The galaxy
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0 0.11
2
PSF, 1 + 2

PSF, 2

Figure 3.7: Cartesian spatial map (Nside = 1024) of the observed magnitude of the point-
spread function ellipticities, |εPSF| =

√
ε2

PSF,1 + ε2
PSF,2, throughout the KiDS-

1000 North field in the upper panel and the KiDS-1000 South field in the lower
panel. εPSF is added to the lensed galaxy shapes in the forward simulations
within KIDS-SBI in accordance with Equation (3.29).

0 8.4
100 rms

Figure 3.8: Cartesian spatial map (Nside = 1024) of root-mean-square of the observed back-
ground noise, σrms, throughout the KiDS-1000 North field in the upper panel
and the KiDS-1000 South field in the lower panel.

density varies from pixel to pixel as it depends on the observational depth of the

survey in different parts of the sky, and on anisotropies and time variations in the

atmospheric seeing. Since many parts of the sky are observed at different times, as

is the case for ground-based telescopes such as the VLT Survey Telescope and the

Visible and the Infrared Survey Telescope for Astronomy (VISTA) used for KiDS-

1000, the atmospheric conditions and background light will be different for each

pointing for a given exposure time. Thus, the depth of observations may change as

seeing, the point spread functions and/or the background flux varies (for example,
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0 8.4
100 rms

Figure 3.9: Spatial map (Nside = 4096) in a Cartesian projection of root-mean-square of the
observed background noise, σrms, for a 5◦×5◦ patch of the KiDS-1000 North
field at a right ascension (RA) of 180◦ and a declination (DEC) of 0◦.

due to zodiacal light or galactic absorption).

In addition, surveys such as KiDS often have overlapping pointings in order

to ensure that the footprint is observed without gaps. However, this implies that

galactic sources which happen to be located near the edge of a pointing will be

observed more often in different overlapping fields than a source located in the

centre of a pointing. Consequently, near the edge of a pointing there will tend

to be a higher signal-to-noise ratio which allows for deeper observations. Since

these systematic effects in the observational depth can happen at fixed scales and/or

have certain periodicities, they can induce significant systematic effects into galaxy

clustering and weak gravitational lensing signals. For cosmic shear in KiDS-1000,

the bias can be near 1% in the signal and an average of ∼ 10% in the standard

deviation of cosmic shear observables (Heydenreich et al., 2020; Joachimi et al.,

2021; Baleato Lizancos & White, 2023).

As the systematics modify the local observational depth, a selection bias occurs

which changes the types of galaxies which can be observed within a given pixel.

This will systematically bias the dispersion of intrinsic ellipticities observed, σ
(p)
ε,m,
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and further exacerbate the effect of observational depth variability on the cosmic

shear signal.

To take all these effects into consideration within the forward simulations, we

calibrate the spatial variability of n(p)
gal,m and σ

(p)
ε,m from the KiDS-1000 measure-

ments directly. Rather than defining maps over the entire survey footprint of both

quantities for each tomographic bin, we use a map of a direct estimator of observa-

tional depth which also correlates with n(p)
gal,m and σ

(p)
ε,m: the root-mean square of the

background noise, σrms. We found this quantity to be a good indicator of variable

depth as it correlates well with the measured n(p)
gal,m and σ

(p)
ε,m, while being uncorre-

lated with the measured photometric redshifts and magnitudes in KiDS-1000.

A similar approach to modelling variable depth has been taken in Joachimi

et al. (2021). However, in this analysis, the variable depth along the KiDS-1000

footprint was modelled with a direct estimate of the magnitude limit in the r-band

(the band in which galaxy shape measurements are made in KiDS). We have found

that the magnitude limit associated with a given galaxy in KiDS DR4 is correlated

with the galaxy’s observed r-band magnitude as well as the photometric redshift es-

timate for the galaxy. This means that a selection according to the magnitude limit

in the r-band as was done in Joachimi et al. (2021) can bias cosmological estimates,

as the selection is not independent from the cosmic shear signal. In contrast, σrms

is uncorrelated with the r-band magnitude measurements and the photometric red-

shifts in KiDS DR4, while still being highly correlated with the local magnitude

limit in the r-band. Thus, we conclude it is a more direct parametrisation of the

variations across the survey footprint the galaxy selection.

As can be seen in Figured 3.8 and 3.9, a map of σrms across the KiDS North

and South fields clearly shows variations over different pointings as well as with

areas of increased overlap. In addition, Figure 3.10 shows that n(p)
gal and σ

(p)
ε vary

linearly with σrms for KiDS-1000 data. Thanks to this fact, we do not need to model

the variation of n(p)
gal,m and σ

(p)
ε,m with the HEALPIX pixel m with individual maps for

each tomographic bin p. Instead, using the linear relations shown in Figure 3.10,

we may assign a value for n(p)
gal,m and σ

(p)
ε,m for each σrms,m (i.e. the mean value of
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Figure 3.10: Plots showing the dependence of the per-component Gaussian shape dis-
persion, σε/

√
2, (top panel) and the galaxy density, ngal, (bottom panel)

on the root-mean square of the background noise, σrms in the KiDS-
1000 DR4 data. For both panels, the data points represent the mean
σε or ngal of ten equi-populated bins in σrms with their boundaries in
{1.70, 2.33, 2.57, 2.80, 3.04, 3.28, 3.52, 3.76, 4.00, 4.23, 12.96}. The solid
line shows the linear fit to the aforementioned data points of their respective
tomographic bin according to Equations (3.30) and (3.31). The parameters
obtained from this fit are given in Table 3.1. The dotted horizontal lines show
the mean values of σε and ngal calculated from the galaxy samples with vari-
able depth per tomographic bin, while the dashed horizontal lines show the
values of σε and ngal for the respective galaxy samples without any spatial
variations in the observational depth. Both of these lines agree exceptionally
well by construction, so that for some source bins there is not any observable
difference between them.
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level within each pixel m contained within the footprint observed by KiDS-1000)

given that

n(p)
gal,m = a(p)

ngalσrms,m +b(p)
ngal, (3.30)

σ
(p)
ε,m = a(p)

σε
σrms,m +b(p)

σε
, (3.31)

where a(p)
ngal and a(p)

σε
are the slopes of the linear fits shown in Figure 3.10 of galaxy

density and galaxy shape dispersion for a given tomographic bin, respectively, and

b(p)
ngal and b(p)

σε
are the associated y-intercepts. The values of these parameters are

shown in Table 3.1. This drastically helps the performance of the forward simu-

lations, as this allows to just use a single map of σrms to model the variable depth

rather than requiring 2Ntomo maps for it. Such a linear relation may not exist in

other weak lensing surveys, but it should still be possible to numerically calibrate

the relations dependence of n(p)
gal and σ

(p)
ε on σrms to define an interpolation.

These inhomogeneities in the galaxy selection across the survey footprint also

change the redshift distribution of galaxies. As σrms decreases, the local magnitude

limit increases and fainter galaxies can be detected by the survey. As more distant

galaxies with high redshifts also tend to be fainter, variable depth can shift the red-

shift distributions of the local galaxy population as can be seen in Figure 3.11. The

redshift distributions shown in Figure 3.11 have been calculated using the same

approach as in KiDS-1000 where the photometric redshifts are calibrated from

spectroscopic samples using self-organising maps (Wright et al., 2019). The self-

organising map has been applied to ten equi-populated subsamples of each tomo-

graphic bin of KiDS DR4 which are binned in σrms along the following boundaries:

{1.70, 2.33, 2.57, 2.80, 3.04, 3.28, 3.52, 3.76, 4.00, 4.23, 12.96}. To account for

variable depth in our forward model, depending on the value of σrms in a given

pixel, m, on the survey footprint, we sample galaxy redshifts in that pixel from

the associated redshift distribution from Figure 3.11. This is effect is important to

model as an unaccounted shift in the redshift distribution can lead to significant

biases in the cosmic shear signal (Heydenreich et al., 2020; Baleato Lizancos &
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Figure 3.11: In the upper panels, plot of the normalised redshift distributions, P(z), for
each tomographic bin (S1 to S5). The redshift distribution from the entire
KiDS-1000 DR4 galaxy sample, Ptotal(z), is shown in black, while the other
ten redshift distributions are derived from 10 equi-populated subsamples of
DR4 based on their observational depth (i.e. the mean value of the root-mean-
square of the background noise, σ rms) which is shown with its respective
colour. The lower panels show the associated residual change in the redshift
distributions with respect to Ptotal(z) per unit redshift. It is apparent that vari-
able depth mostly affects the source distributions at high redshifts, while the
effect tends to decrease the mean of the redshift distribution with increasing
σrms.

White, 2023).

To summarise, in KIDS-SBI, we account for the effects of spatial variations

in the observational depth on galaxy number density, galaxy shape dispersion and

redshift distributions. Moreover, we also consider anisotropies in the shear bias

by including distortions to the lensed galaxy ellipticities calibrated from the spatial

variation in the point-spread function ellipticity in KiDS DR4 (see Section 3.2.7).

3.2.9 Shape Measurements

Upon sampling galaxy shapes as well as shear, and applying all relevant instru-

mental systematics, the forward simulations create a realistic catalogue of galaxies

for each tomographic bin containing the associated εobs for each galaxy. To fully

simulate the KiDS-1000 catalogue, we apply the same corrections to the shear mea-

surements as described in Giblin et al. 2021. The observed shape measurements are

corrected as follows

ε
corr(p)
obs,i (ΘΘΘ) =

1

1+M(p)

∑i∈p wi(εobs,i(ΘΘΘ)−⟨εobs(ΘΘΘ)⟩)
∑i∈p wi

, (3.32)
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where wi is the galaxy LENSFIT weight for galaxy i (for the case of the simulations,

wi = 1∀i), ⟨εobs(ΘΘΘ)⟩ compensates for any additive biases, i.e. the c(p) term and the

mean of α(p) in Equation (3.29), and it is defined as the mean observed shape of all

galaxies within tomographic bin p, and M(p) is the mean multiplicative shear bias

measured for each tomographic bin p as shown in Figure 3.6. Note that M(p) is not

necessarily the same value as the value of M(p) applied in Equation (3.29). For each

instance of the simulations, a different M(p) is drawn from a Gaussian probability

distribution with mean M(p) and the standard deviations shown in Figure 3.6. Re-

gardless of the value of M(p) drawn, the shear measurements of each simulation are

corrected by the same mean M(p). Any discrepancy between these values is going

to introduce noise in the simulations which accounts for the uncertainty on the shear

bias measurements.

3.2.10 Pseudo-Cls

With a full catalogue simulated, we can map any set of cosmological and astro-

physical parameters, ΘΘΘ, to a corresponding set of cosmic shear measurements from

the KiDS survey as required for simulation-based inference. Although theoretically

possible, it is computationally impractical to conduct cosmological inference at the

level of catalogues. For this reason, it is useful to compress the catalogues down

to useful statistics which still retain most of the relevant cosmological information

about the underlying large-scale structure.

We choose to compress the catalogue down to two-point statistics. Firstly,

the forward-simulation pipeline is designed to be only percentage-level accurate

in two-point statistics. Secondly, this assures that the only distinguishing feature

of our analysis when compared to the fiducial cosmic shear KiDS-1000 analyses

(Loureiro et al., 2021; Asgari et al., 2021) is the dropping of the assumption of a

Gaussian likelihood, so we can carry out a direct comparison between the analyses.

This way we can ensure that any non-Gaussianities in our likelihood are either

attributed to inherent non-Gaussianities in the likelihood of two-point statistics or

non-Gaussianities induced by systematic effects.

Due to its computational efficiency when compared to spatial two-point cor-
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relation functions, we choose pseudo-Cls as our two-point statistic. We decom-

pose the observed shear field, ε
corr(p)
obs (θm;ΘΘΘ), into its curl-free E-modes and its

divergence-free B-modes as follows

ε
corr(p)
obs (θ ;ΘΘΘ,Ωsurvey) =

ℓmax

∑
ℓ=0

ℓ

∑
m=−ℓ

(Ẽ(p)
ℓm (ΘΘΘ)+ iB̃(p)

ℓm (ΘΘΘ))2Yℓm(θ), (3.33)

where 2Yℓm(θ) are the spin-2 spherical harmonic functions which define an or-

thonormal basis for the observed shear field, such that

∫
d2

θ ±2Yℓm(θθθ)±2Y ∗
ℓ′m′(θθθ) = δℓℓ′δmm′, (3.34)

while Ẽ(p)
ℓm (ΘΘΘ) and B̃(p)

ℓm (ΘΘΘ) are spherical harmonic coefficients of the curl-free and

the divergence-free observed shear fields within each tomographic bin, respectively.

These coefficients are defined as follows:

Ẽ(p)
ℓm (ΘΘΘ) =

1
2

∫
d2

θ [ε
corr(p)
obs (θθθ ;ΘΘΘ)2Y ∗

ℓm(θθθ) + ε
corr(p)∗
obs (θθθ ;ΘΘΘ)−2Y ∗

ℓm(θθθ)], (3.35)

B̃(p)
ℓm (ΘΘΘ) =

−i
2

∫
d2

θθθ [ε
corr(p)
obs (θθθ ;ΘΘΘ)2Y ∗

ℓm(θθθ) − ε
corr(p)∗
obs (θ ;ΘΘΘ)−2Y ∗

ℓm(θθθ)]. (3.36)

From these coefficients, we then calculate the pseudo-Cls, C̃(pq)
εε (ℓ;ΘΘΘ), as fol-

lows

C̃(pq)
εε,µ(ℓ;ΘΘΘ) =


C̃EE(pq)

εε (ℓ;ΘΘΘ)

C̃EB(pq)
εε (ℓ;ΘΘΘ)

C̃BB(pq)
εε (ℓ;ΘΘΘ)

 (3.37)

=
1

2ℓ+1

ℓ

∑
m=−ℓ


Ẽ(p)
ℓm Ẽ(q)∗

ℓm (ΘΘΘ)

Ẽ(p)
ℓm B̃(q)∗

ℓm (ΘΘΘ)

B̃(p)
ℓm B̃(q)∗

ℓm (ΘΘΘ)

 , (3.38)
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Figure 3.12: Signal of a single run of the KIDS-SBI simulations for all combinations for
five tomographic bins (S1 to S5). The blue points show the pseudo-Cl mea-
surements, C̃(pq)

εε,L(ΘΘΘ), for a realisation single realisation of the KiDS-1000+
model. The orange triangles show the associated BB modes in the cosmic
shear signal. Throughout we assume Ωc = 0.05, Ωb = 0.28, σ8 = 0.84,
S8 = 0.76, H0 = 67 km s−1 Mpc−1, Abary = 3.1 and AIA = 0.56. The uncer-
tainties on the measurements are derived from the covariance matrix described
in Section 3.3.2. The solid black line shows the pseudo-Cls, C̃εε , as derived
from theory (see Appendix B for details on this).

where µ ∈ {1,2,3} such that 1 stands for the EE component, 2 for the EB com-

ponent and 3 for the BB component. Note that C̃EB
εε (ℓ;ΘΘΘ) = C̃BE

εε (ℓ;ΘΘΘ), since

ẼℓmB̃∗
ℓm(ΘΘΘ) = B̃ℓmẼ∗

ℓm(ΘΘΘ).

Going forward, similar to other previous analyses (Hikage et al., 2019;

Loureiro et al., 2021), we only take into consideration C̃EE(pq)
εε (ℓ;ΘΘΘ), so any cosmo-
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logical signal which may have ended up in C̃EB(pq)
εε (ℓ;ΘΘΘ) or C̃EB(pq)

εε (ℓ;ΘΘΘ) because

of EE to EB, or EE to BB mode mixing will be lost. C̃EE(pq)
εε (ℓ;ΘΘΘ) is expected to

still contain all of the cosmological cosmic shear signal (Loureiro et al., 2021), but

the autocorrelations will be dominated by the shape noise. To account for this, we

subtract the mean shape noise power spectrum as follows

C̃(pq)
εε (ℓ;ΘΘΘ) = C̃EE(pq)

εε (ℓ;ΘΘΘ)−δpq⟨C̃EE(pq)
noise (ℓ)⟩, (3.39)

where C̃(pq)
εε (ℓ;ΘΘΘ) is the E-mode pseudo angular power spectrum for cosmic shear

with the shape noise bias subtracted, while ⟨C̃EE(pq)
noise (ℓ)⟩ is the mean of the curl-

free angular power spectrum of the shape noise. The latter is estimated as follows

(Becker et al., 2016; Hikage et al., 2019; Nicola et al., 2021; Loureiro et al., 2021),

C̃EE(pp)
noise (ℓ) =

1
2ℓ+1

ℓ

∑
m=−ℓ

Ẽrand(p)
ℓm (ΘΘΘ)Ẽrand(p)∗

ℓm (ΘΘΘ), (3.40)

where Ẽrand(p)
ℓm is the curl-free spherical harmonic coefficient of the randomly ro-

tated shear values, ε
rand(p)
obs (θm;ΘΘΘ). In turn, we define this field from the following

galaxy shear values as follows:

ε
rand
obs,i(ΘΘΘ) = ε

rand
obs,i,1(ΘΘΘ)+ iε rand

obs,i,2(ΘΘΘ), (3.41)

ε
rand
obs,i,1 = ε

corr
obs,i,1 cos(θrand,i)− ε

corr
obs,i,2 sin(θrand,i), (3.42)

ε
rand
obs,i,2 = ε

corr
obs,i,2 cos(θrand,i)+ ε

corr
obs,i,1 sin(θrand,i), (3.43)

where θrand,i is a randomly drawn angle for each galaxy i from a uniform distribution

where θrand,i ∈ [0,2π). To compute the mean shape noise bias, we have to take

into consideration that each angular power, ℓ. To calculate the mean of the curl-

free angular power spectrum of the shape noise, ⟨C̃EE(pq)
noise (ℓ)⟩, we take mean of all

modes in C̃EE(pq)
noise (ℓ) as follows

⟨C̃EE(pq)
noise (ℓ)⟩=

∑
ℓmax
ℓ=ℓmin

(2ℓ+1)C̃EE(pq)
noise (ℓ)

∑
ℓmax
ℓ=ℓmin

(2ℓ+1)
, (3.44)
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where the mean is weighted by a factor of 2ℓ+ 1 to account for the fact that each

angular scale, ℓ, contains 2ℓ+ 1 modes, m. We find setting ℓmin ∼ 200 yields op-

timal results, as high angular scales are typically shape noise-dominated, and thus

put better constraints on the average shape noise bias. In fact, we find that the

measured average shape noise bias, ⟨C̃EE(pq)
noise (ℓ)⟩, agrees within < 0.5% with the

underlying shape noise signal computed directly from the known intrinsic galaxy

shapes. Additionally, we find that ⟨C̃EE(pq)
noise (ℓ)⟩ is self-consistent with ⟨C̃BB(pq)

noise (ℓ)⟩
within < 0.01%. The introduction of a weighted mean given by Equation (3.44)

allows us to achieve this level of precision with only a single random rotation of

the galaxies’ shapes. Instead, previous approaches relied on creating many differ-

ent instances of random rotations and then computed ⟨C̃EE(pq)
noise (ℓ)⟩ by taking the

average over all the instances while weighting each angular scale, ℓ, equally (see

e.g. Loureiro et al. 2021). When weighting each ℓ equally, the low-ℓ scales have

an equally strong pull on the estimator as the high-ℓ scales which increases the ran-

dom uncertainty on ⟨C̃EE(pq)
noise (ℓ)⟩ as the large scales are mostly dominated by the

large-scale structure signal. For this reason, it is common to take the mean over

many realisation of the shape noise to reduce the variance of the mean. Although

such approaches achieve similar levels of precision when estimating the shape noise

bias as the approach shown in this work, computing the angular power spectra for

hundreds of realisations of randomly rotated galaxy shape catalogues can become

computationally expensive and time-consuming. Hence, it is not feasible for an SBI

analysis which requires ∼104 realisations and we opt to use the weighted mean of

a single realisation of a random rotation to estimate the shape noise bias.

Furthermore, we bin the noise-free observed angular power spectrum,

C̃(pq)
εε (ℓ;ΘΘΘ), into 8 log-spaced bins between ℓ = 76 and ℓ = 1500 in line with

Loureiro et al. 2021. For this, we choose the pseudo-Cl binning scheme described

in Brown et al. 2005 given by

C̃(pq)
εε,L(ΘΘΘ) =

1
2π

ℓmax

∑
ℓ

ℓ(ℓ+1)
(ℓL+1 − ℓL)

C̃(pq)
εε (ℓ;ΘΘΘ), (3.45)

where ℓL and ℓL+1 are the lower and upper limits of the Lth bin, respectively.
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Note that we do not choose to deconvolve the pseudo-Cls to estimate the full-

sky E-mode angular power spectra for cosmic shear. We find that with the sky-

coverage of KiDS-1000 and the complexity of the geometry of the KiDS-1000

footprint, the mixing matrix (see Appendix B) is not necessarily invertable, and

the deconvolution is not single-valued.

We therefore obtain for a given forward simulation a cosmic shear measure-

ment like the one shown in Figure 3.12 for a single run of the forward simulations.

The calculation of the data vector calculated from the theory prediction shown in

Figure 3.12 is described in Appendix B. As can be seen from Figure 3.12, the mea-

sured cosmic shear signal is consistent with theory predictions which we find is the

case at all cosmologies throughout the prior volume. This shows that the log-normal

random fields accurately recover the two-point statistics of the galaxy populations

throughout parameter space, as expected.

As seen in Figure 3.12, for the five tomographic bins in KiDS-1000, we ob-

tain 8×Ntomo(Ntomo + 1)/2 data points in C̃(pq)
εε,L(ΘΘΘ), i.e. a 120-dimensional data

vector. Each data vector depends on 12 parameters in ΘΘΘ: 5 cosmological param-

eters (σ8, the root-mean-square matter fluctuation over 8 Mpc/h0; ωb, baryonic

matter density; ωc, cold dark matter density; ns, the scalar spectral index of the

primordial density fluctuation power spectrum, PR ; and h0, the normalised Hubble

constant), and 7 astrophysical/nuisance parameters related to systematics: Abary, the

baryonic feedback amplitude within the non-linear three-dimensional matter power

spectrum; AIA, the galaxy intrinsic alignment amplitude of the NLA model; and five

correlated δz parameters which define the shift in the mean of the source redshift

distribution, P(z|zph), of each tomographic bin. All other parameters on which the

simulation depends are fixed from run to run (e.g. ωk = 0, the equation of state of

dark energy, w = −1, ∑mν = 0.06 eV, etc.). The exceptions to this are the seed

used to sample the matter overdensities and the galaxies, and the amplitudes of the

shear biases as described in Section 3.2.7. These values are varied from run to run

in order to simulate cosmic variance, shape noise as well as the uncertainty in the

shear bias, respectively.
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Figure 3.13: Bar chart comparing the run-time of a single evaluation of KIDS-SBI (above)
versus a single evaluation of a simulation based on Joachimi et al. 2021 (be-
low), both on a single core ( Nshells = 19, Ntomo = 5 and Nside = 1024). Both
suites of simulations use CAMB (Lewis et al., 2000; Lewis & Challinor,
2002; Howlett et al., 2012) to compute the three-dimensional matter power
spectrum. For the reference simulations, we use the non-Limber projec-
tion built into CAMB with limber phi lmin = 1200 rather than LEVIN with
ℓmax,nL = 1200. We run FLASK (Xavier et al., 2016) rather than GLASS
(Tessore et al., 2023) to compute the underlying matter and convergence fields
of each of the 19 shells. Subsequently, we sample galaxies using SALMO
in both cases, and then calculate the spatial two-point correlation functions,
ξ±(θ), rather than calculating the angular power spectra, C̃(ℓ). To calculate
ξ±(θ) in the reference simulations, we use TREECORR (Jarvis et al., 2004).

A single such evaluation of the forward simulations runs within ∼20 minutes

on a single core (with Nshells = 19, Ntomo = 5 and Nside = 1024). We choose this

spatial resolution Nside, because this implies that the two-point statistics should be

accurate up to an ℓmax ∼ 2×Nside (Leistedt et al., 2013; Alonso et al., 2019). In

addition, in the context of KiDS-1000’s galaxy number density, the pixel size at

an Nside = 1024 is sufficient for almost all pixels to contain at least one galaxy.

This avoids mode mixing in the pseudo Cls due to random masking of empty pixels

which were observed (see Appendix B).

In comparison, as can be seen in the bar chart in Figure 3.13, log-normal ran-

dom field simulations similar to the ones presented in Joachimi et al. 2021, take

∼280 minutes to compute a single forward simulation when run with the same ac-

curacy and precision settings on a single core. These gains in speed are driven by

three main factors: the fast non-Limber integration using the Levin method, the use

of recurrence relations to calculate the convergence within GLASS and the choice
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of using a quick-to-compute summary statistic like angular power spectra, C̃(ℓ).

This is a substantial improvement with respect to other typical codes used for such

simulations, while also improving accuracy with respect to previous models by in-

cluding systematics, improving the resolution along the line-of-sight and dropping

common approximations like the Limber and reduced shear approximation. Thanks

to this, it becomes feasible to increase the precision of our simulations as necessary,

while also adding the realism discussed in Sections 3.2.6, 3.2.7 and 3.2.8, while still

being able to compute the ∼104 forward simulations needed to adequately charac-

terise the effective likelihood L22.

3.3 Simulation-Based Inference (SBI)
The final data vector as defined by the forward simulations is used to determine the

effective likelihood of the data using Density Estimation Likelihood-Free Inference

(DELFI13, Alsing et al. 2019) using the same analysis pipeline outlined in L22.

To implement this, we create a bespoke sampler within COSMOSIS14. Initially,

the sampler chooses a fixed number of points within the considered hyperparam-

eter space based on the hypercube-generating algorithm from the PyDOE15 with

some minor modifications (see L22 for more details). Subsequently, as is outlined

in Figure 3.14, the measured pseudo-Cls for each evaluation of the parameters on

the hypercube are compressed further using score compression (see Sections 1.4.2

and 3.3.2). This reduces the dimensionality of the data vector to the size of the pa-

rameter vector (in this case, 12 dimensions). The compressed data is then used to

train neural density estimators through DELFI (see Sections 1.4.3.2 and 3.3.3). As

the ensembles of neural density estimators evaluate the effective likelihood through-

out the hypercube, through the use of active learning, DELFI finds areas in param-

eter space near likelihood peaks to select new parameter vectors (see Alsing et al.

2019 for details). As found in L22, this can halve the number of simulations needed

to accurately learn the effective likelihood when compared to a Latin hypercube

13https://github.com/justinalsing/pydelfi
14https://github.com/joezuntz/cosmosis
15https://github.com/tisimst/pyDOE

https://github.com/justinalsing/pydelfi
https://github.com/joezuntz/cosmosis
https://github.com/tisimst/pyDOE
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alone. Once the learned effective likelihood has converged, we calculate the poste-

rior distribution based on an observed data vector (which can be a mock or measured

from real data), and the priors. This has the advantage that the posteriors need not

be re-sampled if a different data vector and/or prior are considered.

Going forward, we refer to the model choices that we make within KIDS-SBI

as the KiDS-1000+ model. The model follows the choices outlined in Section 3.2. It

is designed to be consistent with previous analyses of KiDS-1000, specifically, with

Loureiro et al. (2021). Both analyses assume a flat ΛCDM cosmology to model

the cosmic shear signal, both use pseudo-Cls as their data vector of choice, and

both consider systematics such as multiplicative shear bias, variable depth in the

uncertainty and intrinsic alignments in the signal. The KiDS-1000+ model differs

slightly from Loureiro et al. (2021) in that it also includes variable depth in the

signal modelling (as described in Section 3.2.8), it considers the effect of intrinsic

alignments on the likelihood, and it takes into account the variance in the additive

and PSF shear biases (as described in Section 3.2.7). This is a consequence of the

fact that in KIDS-SBI the effects which are modelled in the signal are intrinsically

considered in the uncertainty model. In Loureiro et al. (2021), these effects are

only considered separately as they pertain to the signal or the uncertainty, not both

at once. Having said that, these discrepancies between the two models are not

expected to have a significant effect on the Gaussian likelihood.

3.3.1 Parameters and Priors

The parameters which are varied in the simulation-based inference in this work are

shown in Table 3.2. The priors shown in Table 3.2 for each parameter are selected

in accordance with the assumed priors for the previous KiDS-1000 cosmic shear

analyses (Asgari et al., 2021; Heymans et al., 2021; Loureiro et al., 2021; van den

Busch et al., 2022).

To avoid overinformative priors, most are flat top-hat functions. For the same

reason, the top-hat priors in S8, h0, ωb, AIA and Abary are chosen to be wide. The

prior on ns spans a smaller range around the theoretical value of unity for scale-

invariant primordial fluctuations. This avoids artefacts within the prior volume as
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Figure 3.14: Flowchart describing the structure of the simulation-based inference pipeline.
The dark blue rounded boxes represent the inputs and outputs which are given
to the simulation-based inference pipeline. The grey rectangular boxes show
steps in the inference pipeline.

this parameter is not well constrained by weak gravitational lensing. The prior

on ωc is defined to be consistent with a range in Ωm ∈ [0.188,0.408], where the

limits are given by the ±5σ intervals of the marginal constraints from independent

measurements of luminosity distance to Type Ia Supernovae in Scolnic et al. (2018).

See Joachimi et al. (2021) for more details on the motivations for the chosen priors.

The priors on the nuisance parameters capturing any shifts in the mean of each of

the five tomographic bins, δδδ z, are given by a multivariate Gaussian, since the δz of

a given tomographic bin is not independent of the shifts in the other bins. This is

quantified by the covariance, CCCz, as estimated in Hildebrandt et al. (2021).

3.3.2 Score Compression

To improve the computational efficiency of the analysis and to facilitate the use

of DELFI, we compress each of the 120-dimensional data vectors measured from
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Parameter Symbol Prior type Prior parameters
Density fluctuation amp. S8 Flat [0.1, 1.3]

Hubble constant h0 Flat [0.64, 0.82]
Cold dark matter density ωc Flat [0.051, 0.255]
Baryonic matter density ωb Flat [0.019, 0.026]

Scalar spectral index ns Flat [0.84, 1.1]
Intrinsic alignment amp. AIA Flat [-6, 6]
Baryon feedback amp. Abary Flat [2, 3.13]
Redshift displacement δδδ z Gaussian N (000,CCCz)

Table 3.2: Table showing the parameters which are varied within the simulation-based in-
ference pipeline. The prior ranges are selected to be exactly in line with previous
KiDS-1000 analyses (Asgari et al., 2021; Heymans et al., 2021; Loureiro et al.,
2021; van den Busch et al., 2022). The upper five rows show the cosmological
parameters of interest, while the lower three rows show the nuisance parameters
which quantify systematic biases. For flat priors, the lower and upper limits of
the normalised rectangular function which defines the prior. For the Gaussian
prior on δδδ z, we use a five-dimensional multivariate Gaussian with its mean at
the zero vector and the covariance, CCCz, defined by the one estimated in (Hilde-
brandt et al., 2021). Note that for simplicity the δδδ z are implicitly marginalised
throughout this analysis.

each forward simulation using nuisance-hardened score compression as described

in Alsing et al. (2019). As discussed in Section 1.4.2, if the likelihood is known

a priori, one can compress a given data vector to a summary of the same dimen-

sionality as the degrees of freedom in the assumed model, such that Fisher infor-

mation is conserved (Zablocki & Dodelson, 2016; Alsing & Wandelt, 2018; Alsing

et al., 2018; Alsing et al., 2019). If the likelihood is Gaussian, this is equivalent to

MOPED (Heavens et al., 2000b) or a linear compression based on Karhunen-Loéve

eigenvalue decomposition (Tegmark et al., 1997).

In this work the exact form of the likelihood is not known a priori, as the main

motivation is to characterise the form of the effective likelihood. However, it is still

possible to perform score compression on the data by assuming an analytical form

for the likelihood when defining the Fisher matrix. To this end, we create 1,000

forward simulations at a fiducial cosmology to characterise a numerical covariance

which we use to define the Fisher matrix using Equation (1.112). This compression

is optimal if the true likelihood and the chosen fiducial set of parameters equal to the

true parameters. The downside of this is that the compression can lose information
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if the latter is not the case. Nevertheless, it was found in L22 that, in KIDS-SBI,

the score compression is robust to suboptimal choices of fiducial parameter values

and of data covariance.

Additionally, we find that the 12 parameters shown in Table 3.2 are not nec-

essary to characterise the degrees of freedom of the 120-dimensional cosmic shear

pseudo-Cls. As all δz are broadly consistent with zero, we may compress all data

vectors to a seven-dimensional summary which is still capable of capturing all the

complexity in the data. In any case, the δδδ z parameters are still explicitly varied

within the simulation to propagate any uncertainties on the mean of the tomographic

bins. For simplicity, henceforth all posteriors are implicitly marginalised over the

five δz parameters.

In Figure 3.15, we show the Fisher forecasts used for the score compression

of the data in this analysis. The contours shown in Figure 3.15 are obtained from

sampling a Gaussian likelihood characterised by the inverse of the Fisher matrix

defined in Equation (1.112) as its covariance and the fiducial parameters as the

mean. Besides this, the Fisher forecasts are also useful to estimate the constraining

power that a Gaussian likelihood based on the KiDS-1000+ model has. We note that

the constraining power achieved by the KiDS-1000+ model appears to be improved

when including variable depth in the modelling. This is driven by variable depth

reducing the estimated shape noise in KiDS-1000, which improves the constraining

power on S8 and AIA (see Chapter 4 for a detailed discussion of this).

3.3.3 Density Estimation Likelihood-Free Inference

To estimate the effective likelihood for the KiDS-1000+ model, we train neural

density estimators using DELFI (Alsing et al., 2019) such that they learn the joint

probability distribution between the compressed data and the input cosmological

parameters. To this end, we initialise an ensemble of six independent conditional

Masked Autoregressive Flows (MAFs). Each MAF is made up of between three and

eight Masked Autoencoder for Density Estimations (MADEs) each with two hidden

layers of 50 neurons. For a detailed definition and description of these network

architectures, see Section 1.4.3.
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Figure 3.15: Contours showing the Fisher forecasts obtained from 1,000 realisations of the
KiDS-1000+ (in blue) model. The input fiducial cosmology is set to be S8 =
0.761, ωc = 0.118, ωb = 0.022, h0 = 0.657, ns = 1.0, AIA = 0.396, Abary =
3.113.
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Initially, the ensemble of NDEs learns the effective likelihood from a set 400

points on a Latin hypercube. Based on this, we then make use of the active learning

feature within DELFI to sample additional points in parameter space which most

efficiently contribute to learning the effective likelihood within prior space. This

recursive sampling continues until the training loss as defined in Equation (1.128)

plateaus at a minimum. We find that for the KiDS-1000+ model, this occurs already

after 5,000 realisations. We note that the NDEs require fewer realistic KiDS-SBI

forward simulations to minimise the loss function as is the case in L22 where the

forward simulations where idealised random samples from a Gaussian distribution.

In any case, to ensure that the prior space is densely sampled, we choose to train the

NDEs on 14,000 realisations. This is facilitated by the computational efficiency of

the forward simulations making additional realisations relatively inexpensive.

Upon training each of the six MADs on a fraction of the forward simulation

independently, the NDEs are stacked while weighting each according to their rel-

ative cross-validation losses. From the stacked NDE, we obtain the final posterior

distributions.

3.4 Validation of the SBI Pipeline

The SBI pipeline presented in this work has previously been extensively tested in an

idealised case. From the findings in L22, we conclude that the SBI pipeline based

on DELFI implemented within KIDS-SBI robustly and accurately recovers the

posterior distribution of ΛCDM cosmological parameters from KiDS-1000 cosmic

shear data, even if the data compression loses information. However, L22 only

considered simulated data whose likelihood is by construction Gaussian. For this

reason, it becomes necessary to test the robustness of the SBI pipeline again for the

KiDS-1000+ forward model.

Figure 3.16 shows the posterior distribution of the seven main parameters var-

ied in the analysis as learned from 14,000 realisations of the KiDS-1000+ model.

The data vector used for this posterior is a noisy mock data vector generated with

the KiDS-1000+ model while assuming the input parameters shown in Figure 3.12.
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Figure 3.16: Posterior contours, in blue, of the seven cosmological and astrophysical pa-
rameters which are varied given the KiDS-1000+ model within KIDS-SBI
over the prior space shown in Table 3.2. The black solid lines indicate the true
cosmology of the input mock data vector generated from the KiDS-1000+
model while adding noise. All the aforementioned values are shown in Ta-
ble 3.3. These posteriors are obtained from training neural density estimators
in DELFI (Alsing et al., 2019) on 14,000 realisations of the forward simula-
tions assuming the KiDS-1000+ model, in line with the choices made in L22.
The posterior is obtained from the combined posteriors of six independent
conditional Masked Autoregressive Flows (MADs) each is made up of three
to eight Masked Autoencoder for Density Estimations (MADEs) each with
two hidden layers of 50 neurons.
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Figure 3.17: Posterior marginals, in blue, of the three cosmological parameters of interest
which varied given the KiDS-1000+ model within KIDS-SBI over the prior
space shown in Table 3.2. The black solid lines indicate the true cosmology
of the input mock data vector generated from the KiDS-1000+ model while
adding noise. All the aforementioned values are shown in Table 3.3. Note
that the matter density parameter, Ωm, is a derived parameter given by Ωm ≡
(ωc + ωb)/h2

0, and the posterior shown here is derived from the posteriors
shown in Figure 3.16.

We find that the posteriors from KiDS-SBI accurately recover the true input param-

eters (see Table 3.3 to see the inferred parameter values). As expected and shown

in Figure 3.17, the KiDS-1000+ posterior mostly only constrains S8 and AIA. At the

same time, it becomes apparent that the posterior distributions over ωb, ns, Abary and

h0 are mainly prior driven, i.e. the posterior distribution is mostly flat throughout

prior space. As the cosmic shear signal is largely degenerate to small changes in

these parameters, this is expected. However, in analyses which assume a Gaussian

likelihood, such parameters which are unconstrained by the data, can appear con-
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Parameter Mock truth Marginal ±1σ MAP ± PJ-HPD
S8 0.756 0.752+0.034

−0.029 0.753+0.022
−0.049

σ8 0.706 0.720+0.093
−0.19 0.618+0.156

−0.138
Ωm 0.344 0.36+0.10

−0.14 0.446+0.212
−0.150

h0 0.657 < 0.747 0.640+0.125
−0.001

ωc 0.292 0.162+0.075
−0.048 0.160+0.095

−0.027
ωb 0.022 — 0.023+0.003

−0.003
ns 1.0 < 0.981 0.984+0.014

−0.131

AIA 0.396 0.11+0.48
−0.31 0.257+0.360

−0.448
Abary 3.133 — 2.016+0.911

−0.016

Table 3.3: Table of the main inferred cosmological and astrophysical parameters varied
within the KiDS-1000+ model. For each parameter, we show the underlying
true value which was input into the mock data vector, and the inferred value re-
covered by KIDS-SBI. The second column shows the marginal peaks as well
as the upper and lower 68% confidence intervals, i.e. 1σ , of the marginals. h0,
ns, ωb, and Abary are not well enough constrained in order to calculate a mean-
ingful marginal parameter estimate. The third columns shows the Maximum A
Posteriori (MAP), and the uncertainties are defined as the upper and lower 68%
confidence intervals, i.e. 1σ , given by the projected joint highest posterior den-
sity, PJ-HPD (Robert et al., 2007; Joachimi et al., 2021). Note that cosmic shear
is only expected to recover precisely the value of S8 and AIA.

strained in the posterior just because of the constraints placed by the assumption

of a Gaussian likelihood. In contrast, the additional degrees of freedom in the ef-

fective likelihood learned by the NDEs can help avoid overconfident constraints on

parameters.

To determine whether the learned posterior distribution from the KiDS-1000+

model is representative of the true underlying posterior and is unbiased, we conduct

the Tests of Accuracy with Random Points (TARP) shown in Figure 3.18. TARP

(Lemos et al., 2023a) measures the expected coverage probability of a random sam-

ple of posterior samples within a given credibility level of the learned posterior. If

the expected coverage probability is directly proportional to the credibility level, it

would indicate that the learned posterior is unbiased and representative of the true

underlying posterior. Any biases in the learned posterior would lead to deviations

from linearity in the TARP. As can be seen from Figure 3.18, the learned posterior

must be unbiased and accurate (Lin et al., in prep.). At low credibility levels, the

posterior samples are narrower than the ideal expectation, so the learned posterior
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Figure 3.18: Plot of the expected coverage probability versus the credibility level as defined
in the Tests of Accuracy with Random Points (TARP) described in Lemos
et al. (2023a) for the posterior shown in Figure 3.16 assuming the KiDS-
1000+ model. The dashed line is a reference line for a perfectly linear relation.
The credibility level gives the fraction of the total probability density of the
learned posterior being considered, while the expected coverage probability
measures the fraction of posterior samples which have a posterior probability
smaller than the best estimate at a given credibility level. We note the relation
in this case is highly linear which is a necessary and sufficient measure that
the posterior estimate given in Figure 3.16 is accurate. Figure from Lin et al.
(in prep.).

is slightly underconfident.

In summary, we find that the SBI inference pipeline within KiDS-SBI accu-

rately and robustly recovers the underlying posterior distribution of ΛCDM param-

eters from 2PCF measurements of the cosmic shear signal in KiDS-1000 when con-

sidering a forward model based log-normal random fields and biased by relevant

systematic effects.

3.5 Cosmological Inference from Mock KiDS-1000

Data

To put the constraining power of the results from KIDS-SBI into context, we com-

pare the posterior contours shown in Figures 3.16 and 3.17 with the constraints from
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other analyses: an analysis of the KiDS-1000 cosmic shear signal from pseudo-

Cls assuming a Gaussian likelihood (Loureiro et al., 2021), and the cosmological

constraints from the TT+TE+EE modes of temperature fluctuations in the cosmic

microwave background (Planck Collaboration et al., 2020).

Figure 3.19 compares the marginalised posterior contours from these analy-

sis over S8, Ωm and AIA, where the latter is not inferred from CMB data, as it

is a nuisance parameter specific weak lensing and galaxy survey probes. In Fig-

ure 3.19, the SBI posterior contours are consistent with the Gaussian likelihood

contours from Loureiro et al. (2021) by construction, as the input data vector used

for the SBI KiDS-1000+ contours are set to near the MAP cosmology inferred from

the KiDS-1000 data (Asgari et al., 2021). Despite this being the case, it is ap-

parent that the constraints in S8 and Ωm from the SBI posteriors are noticeably

more conservative than the constraints from the Gaussian likelihood analysis from

Loureiro et al. (2021), while the opposite is the case for AIA. In particular, the SBI

posterior prefers higher values of S8 and smaller values of Ωm than the Gaussian

likelihood analysis. Nevertheless, the KiDS-1000+ model is still in good agree-

ment with Loureiro et al. (2021). The marginal in S8 from SBI KiDS-1000+ is

S8 = 0.752+0.034
−0.029 (i.e. a relative uncertainty of 8.4%), while in Loureiro et al. (2021)

it was found to be S8 = 0.742+0.034
−0.023. At the same time, the SBI KiDS-1000+ yields

a MAP±PJ-HPD of S8 = 0.753+0.022
−0.049 (i.e. a relative uncertainty of 7.6%), while the

MAP±PJ-HPD from Loureiro et al. (2021) is S8 = 0.754+0.027
−0.029. The latter implies

that the dropping the assumption of a Gaussian likelihood increases the relative un-

certainty on S8 from 7.4% to 9.4%, while also changing the skew of the posterior

distribution such that higher values of S8 and Ωm are preferred over low values of

S8 and Ωm. We note that the shape of the posterior and the resultant constraints on

S8 can noticeably change depending on the mock realisation used as the measured

data vector. Consequently, the uncertainties quoted here may not be entirely rep-

resentative of the constraints obtained from the real KiDS-1000 cosmic shear data.

Having said this, if this result persists in the real KiDS-1000 data, this would pro-

vide further insights into the S8 or σ8 “tension” observed between early-Universe
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Figure 3.19: Posterior contours of the main constrained cosmological parameters from the
KIDS-SBI analysis of a mock cosmic shear data vector assuming the KiDS-
1000+ model (in orange) compared against posterior contours from other
analysis. The purple contour shows the posterior from an analysis of the cos-
mic shear signal measured with pseudo-Cls from KiDS-1000 data assuming
a Gaussian likelihood (Loureiro et al. 2021; where the uncertainty model in-
cludes variable depth as is the case in the KiDS-1000+ model), while the
blue contour shows the posterior from the cosmic microwave background con-
straints from the TT+TE+EE modes (Planck Collaboration et al., 2020). The
solid black lines show the true cosmology assumed in the mock data vectors
used for the SBI contours (see Table 3.3). The true cosmology is based on the
MAP from Asgari et al. (2021) which is close to the MAP from Loureiro et al.
(2021), but noticeably different from the preferred cosmology from Planck
Collaboration et al. (2020). Note that the Planck TT+TE+EE contours do not
have any marginals in AIA as the CMB is not sensitive to the IAs of galaxies.
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and late-Universe large-scale structure probes (Hildebrandt et al., 2017; Planck Col-

laboration et al., 2020; Asgari et al., 2021; Amon et al., 2022; Li et al., 2023; Qu

et al., 2023). To quantify this, we use the marginal tension estimate, τ , given by

τ =
|θ̂A − θ̂B|√

σ2
A +σ2

B

, (3.46)

where θ̂A and θ̂B are the best estimates from probe A and B, respectively, while

σ2
A and σ2

B are the variance of probe A and B. Applying this metric to quantify the

tension between the best estimate in S8 marginal from SBI KiDS-1000+ and from

Planck Collaboration et al. (2020) TT+TE+EE+lowE (S8 = 0.832±0.013), we find

that the “tension” is 2.2σ as opposed to the 2.8σ tension between the S8 estimates

from Loureiro et al. (2021) and Planck Collaboration et al. (2020).

As the modelling assumptions in Loureiro et al. (2021) and in the KiDS-1000+

model are constructed to be consistent, with the one exception being that the former

assumes a Gaussian likelihood and the latter does not, the discrepancy in their con-

straints may point at a non-negligible non-Gaussianity in the likelihood of 2PCF of

the cosmic shear signal. Such a result would be in tension with previous studies test-

ing the Gaussianity of the likelihood of cosmic shear 2PCF (Schneider & Hartlap,

2009; Sellentin & Heavens, 2018; Sellentin et al., 2018; Taylor et al., 2019; Upham

et al., 2021), so we investigate in detail the origin of the reduced constraining power

observed in this work.

Firstly, we explore the possibility of low angular modes entering our summary

statistic. Previous studies have found that the modes at angular frequencies (ℓ < 50)

in the 2PCF can have significant non-Gaussianities in their likelihood (Hamimeche

& Lewis, 2008; Schneider & Hartlap, 2009; Sellentin et al., 2018; Lin et al., 2020).

As we do not deconvolve the pseudo-Cls used as summary statistics for the cosmic

shear signal in this analysis, such low-ℓ modes may enter the measured C̃EE(ℓ)

due to mode mixing (see Appendix B). To examine this in more detail, Figure 3.20

shows an example of the contributions of low-ℓ modes to the observed pseudo-

Cls in the autocorrelation of the 5th tomographic bin in KiDS-1000, which has
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Figure 3.20: Plots showing the effect of mode mixing due to the KiDS-1000 survey foot-
print on the cosmic shear signal in the 5-5 tomographic bin combination. The
left panel shows the expected angular power spectra from theory in blue,
C(55)

EE (ℓ), truncated such that modes with ℓ ≥ 50 are set to zero, while also
showing the corresponding pseudo-Cl, C̃(55)

low (ℓ), in orange which is derived
from the mixing matrix shown in Figure B.1. The black dashed line marks
lower limit in the domain of the pseudo-Cls considered in this analysis, i.e.
ℓ = 76. The right panel shows the ratio between the aforementioned pseudo-
Cl derived from truncated theoretical angular power spectra over the mea-
sured pseudo-Cl for ℓ∈ [76,1500] from a single evaluation of the KiDS-1000+
model with KIDS-SBI assuming the same cosmology.

the highest signal-to-noise ratio. We see that the cosmic shear signal from angular

frequencies below 50 can contribute between 0.02% and 0.16% to the observed

pseudo-Cl signal at ℓ > 76 due to the mode mixing caused by the KiDS-1000 survey

footprint. Consequently, we determine that this effect is too small to explain the

observed increase of 13% in the relative uncertainty of S8.

Another known effect which is implicitly ingrained in the error propagation

of the SBI pipeline is the cosmology dependence of the uncertainty in the cosmic

shear signal. It is known that cosmic variance varies with the assumed cosmological

parameters (Eifler et al., 2009). Any such parameter dependence in the uncertainty

of the cosmic shear signal is ignored in a Gaussian likelihood analysis, as it assumes

that the covariance is fixed for all cosmologies. In KIDS-SBI, these parameter

dependencies are implicitly carried through to the learned likelihood where they

manifest changes in the uncertainty as a function of the cosmology across likelihood

space.
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Figure 3.21: Likelihood marginals in the compressed data space for 5 different assumed
sets of cosmological parameters given the KiDS-1000+ model within KIDS-
SBI over the prior space shown in Table 3.2. The compressed data values are
labelled according to the cosmological parameter with which they are most
correlated (see Sections 1.4.2 and 3.3.2 for details). For the orange contours,
the input data vector is set to S8 = 0.694, S8 = 0.724 for the pink contours,
S8 = 0.754 for the purple contours, S8 = 0.784 for the purple contours, and
S8 = 0.814 for the blue contours. All other cosmological parameters are taken
to be the same as in Table 3.3. Table 3.4 shows the S8 values and the associated
standard deviations in the likelihood marginals.
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S8 σωc σωb σS8 σAIA σh0 σns σAbary

0.694 0.041 0.0086 0.034 0.55 0.24 0.32 1.3
0.724 0.043 0.0091 0.033 0.56 0.24 0.33 1.3
0.754 0.044 0.01 0.032 0.58 0.25 0.33 1.3
0.784 0.047 0.011 0.032 0.56 0.26 0.34 1.3
0.814 0.048 0.012 0.034 0.58 0.26 0.34 1.3

Table 3.4: Table of the standard deviations of the marginal likelihoods shown in Figure 3.21
as the assumed valued of S8 is varied.

To determine whether the SBI likelihood is cosmology-dependent, we draw

samples from the likelihood learned by the neural density estimators while assuming

different values of S8 and keeping the same mock data vector, while fixing all other

inferred parameters. Figure 3.21 shows the resulting likelihood contours. Firstly,

we note that at a given cosmology, the likelihood samples are consistent with a

Gaussian distribution. At the same time, we find that as we increase the assumed

value of S8 in the likelihood in increments of approximately 0.025, the width of

the likelihood contours steadily increases in the marginals of the data points most

correlated with ωb, ωc, h0, and ns, as evidenced in Table 3.4. In fact, with each

increment in S8, these marginals widen by between 2% and 10%. This implies that

the estimated likelihood in the cosmic shear 2PCF is dependent in S8.

To determine the origin of the observed cosmology-dependence in the likeli-

hood, we investigate whether there is a theoretical justification for the uncertainty

in the cosmic shear signal in KiDS-1000 to vary significantly with S8. First, we

assume that the likelihood of a full-sky shear angular power spectrum, C(ℓ), at a

given cosmology is Gaussian, i.e. L ∝ exp(−1
2 χ2), where χ is the goodness of fit

given by

χ
(pq) =

Ĉ(pq)(ℓ)−C(pq)
fid (ℓ)

σ
(pq)
fid (ℓ)

, (3.47)

where Ĉ(pq) is the observed data vector, C(pq)
fid is the modelled data vector at the

fiducial cosmology, and σ
(pq)
fid is the standard deviation of the data at the fiducial

cosmology. Assuming that the underlying shear field is described by a Gaussian

random field, σ
(pq)
fid is given by
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(
σ
(pq)
fid

)2
=

[
(
C(pq)

fid (ℓ)
]2
+C(pp)

fid (ℓ)C(qq)
fid (ℓ)

2ℓ+1
+
[
N(pq)(ℓ)

]2
, (3.48)

where the first term on the right-hand side defined the contribution due to cosmic

variance, while N(pq) is the shape noise contribution for a given tomographic bin

combination (Joachimi et al., 2011a). To assess the impact of varying S8 on such

a likelihood distribution, we introduce a toy parameter, a, which linearly scales the

model’s fiducial data vector similar to S8 as follows

C(pq)
fid,a(ℓ) = aC(pq)

fid (ℓ). (3.49)

Hence, we can define χ
(pq)
a as the the goodness of fit after rescaling the model

by combining Equations (3.47), (3.48) and (3.49) as follows

χ
(pq)
a =

1−a±χ(pq)

√
1+
[

R(pq)(ℓ)
]−2

2ℓ+1 +
[
N(pq)(ℓ)/C(pq)

fid (ℓ)
]2√

a2 1+
[

R(pq)(ℓ)
]−2

2l+1 +
[
N(pq)(ℓ)/C(pq)

fid (ℓ)
]2 , (3.50)

where R(pq)(ℓ) ≡ C(pq)
fid (ℓ)/

√
C(pp)

fid (ℓ)C(qq)
fid (ℓ). By calculating the distribution of

exp(−1
2 χ2

a ) over χ for different values of ℓ and a, we can assess the impact of rescal-

ing the shear angular power spectrum directly on the Gaussian likelihood across dif-

ferent angular scales, ℓ. To facilitate this, one can analytically compute the standard

deviation of this distribution, σχa , as follows

σ
2
χa

= 1+
a2 −1

1+(2ℓ+1)
[

N(pq)(ℓ)/C(pq)
fid (ℓ)

]2

1+
[

R(pq)(ℓ)
]−2

. (3.51)

Applying Equation (3.51) to the five KiDS-1000 tomographic bins, while as-

suming a shape noise contribution consistent with the values given in Table 3.1, we

obtain Figure 3.22. We find that, as expected, at large angular scales (ℓ = 500),

the likelihood is dominated by the shape noise contribution, so its width does not

scale with a under any circumstance. However, at ℓ = 70 and ℓ = 100, in some
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tomographic bin combinations where the signal-to-noise ratio is large enough (i.e.

the higher redshift bins), the width of the likelihood distribution scales linearly with

the scaling applied to the shear angular power spectrum, a. This implies that the

uncertainty of the KiDS-1000 cosmic shear measurements is dependent on the am-

plitude of the measurement itself, and therefore to the underlying cosmology. In

fact, as shown in the upper right panel of Figure 3.22, the broadening of the analyti-

cal likelihood with a appears to be generally consistent with the widening observed

in the likelihood marginals from the KiDS-1000+ model in KIDS-SBI shown in

Figure 3.21 and Table 3.4.

To confirm that the 2PCF cosmic shear likelihood is Gaussian at a given cos-

mology, but varies with the underlying cosmology, we repeat the KIDS-SBI anal-

ysis with the KiDS-1000+ model shown in Figures 3.16, 3.17, and 3.19 with a dif-

ferent architecture for the neural density estimators within DEFLI. Instead of using

an ensemble of MAFs, we train a single Mixture Density Network (MDN; Bishop

1994) which is made up of a single multivariate Gaussian (see Section 1.4.3.2 for

details). This forces the likelihood to be Gaussian, while still allowing the cosmol-

ogy to vary for each likelihood evaluation. As shown in Figure 3.23, the posterior

from the MDN network is virtually identical to the posterior obtained from the SBI

which allows for a non-Gaussian likelihood. Hence, we conclude that the likelihood

of cosmic shear 2PCF conforms to a cosmology-dependent Gaussian likelihood.

Additionally, previous studies testing the Gaussianity of the cosmic shear like-

lihood do not consider all the systematics which are typically modelled in a cos-

mic shear analysis. Many neglect to incorporate some physical systematics, such

as intrinsic alignments, or completely neglect observational systematics, such as

the survey mask, shear biases or variable depth. For many of these systematics,

their effect on the Gaussianity of the cosmic shear likelihood is currently unknown.

Hence, each individually or in combination, these systematics may be introducing

additional non-Gaussianities into the likelihood.

At the same time, it is also important to note that removing the assumption

of a Gaussian likelihood can be interpreted as removing constraints on the allowed
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Figure 3.22: Plot of the standard deviation of the analytical likelihood distribution of χa

(which is given by the goodness of fit of the cosmic shear 2PCF signal scaled
by a factor of a) as a function of the factor a. Each of the panels shows the
effect on the shear signal of a different combination of the five KiDS-1000
tomographic bins (S1 to S5). The blue dots represent the σχa values at ℓ= 70
which is just below the scale cuts applied in the KiDS-1000+ model. The
orange crosses are evaluated at ℓ = 100, while the green plus signs assume
ℓ= 500, where the uncertainty is dominated by the shape noise. The panel in
the upper right corner shows how the 1σ intervals of the likelihood marginals
from KIDS-SBI vary with respect to the change in S8 relative to Sfid

8 = 0.754
as shown in Figure 3.21 and Table 3.4. The grey dashed line in each panel
shows a direct proportionality for reference.
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Figure 3.23: Posterior contours of the seven cosmological and astrophysical parameters
which are varied given the KiDS-1000+ model within KIDS-SBI over the
prior space shown in Table 3.2. Both contours are obtained from training
neural density estimators in DELFI (Alsing et al., 2019) on 14,000 realisa-
tions of the forward simulations assuming the KiDS-1000+ model, in line
with the choices made in L22. The blue posterior is calculated from a single
Mixture Density Network which is made up of a single multivariate Gaus-
sian. The orange countour is the combined posteriors of six independent con-
ditional Masked Autoregressive Flows (MADs) each is made up of three to
eight Masked Autoencoder for Density Estimations (MADEs) each with two
hidden layers of 50 neurons. The black solid lines indicate the true cosmology
of the input mock data vector generated from the KiDS-1000+ model while
adding noise. All the aforementioned values are shown in Table 3.3.
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posterior distributions. Consequently, certain parameter combinations/volumes in

prior space which were previously down-weighted, as they could not be adequately

sampled by a distribution only quantified by a mean and a variance, can be char-

acterised without any constraints. Such a picture appears to be consistent with the

findings in Leclercq & Heavens (2021). In this study, it was found that, when in-

ferring parameters of a toy model which characterises a log-normal random field

from measurements of 2PCF, the constraints from SBI were found to be similarly

conservative with respect to the constraints from a posterior assuming a Gaussian

likelihood for the 2PCF. However, we do not find any indications that this is due to

any intrinsic loss of constraining power caused by the simulation-based inference

methodology (Lin et al., 2023).

3.6 Conclusions

In this chapter, we have presented a novel suite of stochastic forward simulations

of cosmic shear observables, KIDS-SBI, which take into consideration all the sys-

tematic effects which are typically considered in a weak lensing analysis. At the

same time, KIDS-SBI introduces considerable improvements in accuracy and per-

formance with respect to previous similar simulation environments: non-Limber

projections of angular power spectra, higher resolution along the line-of-sight, in-

clusion of intrinsic alignments, consideration of variable depth and anisotropic shear

biases, and significant computational performance improvements.

On the basis of these forward simulations, we implement the first-of-its-kind

simulation-based inference analysis of large-scale structure observables with the

same level of complexity as other standard analyses in the field. Thus, this en-

ables us to fully propagate all uncertainties from the data vector all the way to

the inferred cosmological parameters in a Bayesian way. We conduct inference of

the cosmological parameters in flat ΛCDM from cosmic shear two-point statistics

(2PCFs) assuming a forward model consistent with previous KiDS-1000 analyses:

the KiDS-1000+ model.

We determine that KIDS-SBI recovers accurate and robust posteriors of the
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cosmological parameters of interest. At the same time, we find that, when assuming

a Gaussian likelihood, KIDS-SBI forward simulations give constraints consistent

with previous analyses which made the same assumptions.

We also conclude that the constraints on S8 and Ωm from SBI are noticeably

broader than constraints from equivalent analyses assuming a Gaussian likelihood.

This suggests that the effective likelihood of the cosmic shear 2PCF learned through

neural density estimators from the forward simulations, although approximately

Gaussian at a given cosmology, is appreciably cosmology-dependent over the prior

space. We exclude that any non-Gaussian contributions are driven by modes of

ℓ < 50 in the two-point statistics of the full-sky shear-shear field being mixed by the

KiDS-1000 survey footprint such that they are measured in the observed pseudo-

Cls at ℓ > 76. Instead, we determine that our findings are consistent with cosmic

variance scaling significantly with the underlying value of S8, as has been observed

in previous work (Eifler et al., 2009). The presence of such dependencies connotes

cosmology-dependence in the likelihood which stand in contrast to a standard Gaus-

sian likelihood analysis, where the cosmology dependence of the noise is ignored

as the covariance is assumed to be fixed for all cosmologies. In the SBI analysis

presented in this work, all such cosmology dependencies are implicitly considered

through the forward model. Additionally, we expect that the deviations from the

Gaussian likelihood analysis, at least partially, stem from the inclusion of system-

atics, such as intrinsic alignments, the survey footprint, and variable depth in the

forward model which are not always included in other uncertainty models. Further

investigations are necessary to fully determine whether the constraints observed in

this SBI analysis can be reproduced with other forward models.

The next step in this analysis is conducting the same cosmological inference

with the SBI pipeline with the real KiDS-1000 cosmic shear data vector. This result

is not included in this work as we have followed a blinding strategy which consists

in avoiding the evaluation of the effective likelihood of the real KiDS-1000 data

until all tests on the SBI pipeline are finalised. Even though the KiDS-1000 cosmo-

logical analyses are already public, the non-Gaussian likelihood of the cosmic shear
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2PCF is still unknown.

In any case, if the best estimate of S8 and the uncertainties on S8 obtained from

the SBI analysis shown in this work remain the same, this would give important

insights into the current σ8 “tension” between early- and late-Universe large-scale

structure probes. In this scenario, the measured tension in S8 between KiDS-1000

and Planck 2018 would be within 2.2σ , rather than the 2.8σ found in an equivalent

Gaussian likelihood analysis (Loureiro et al., 2021) or the 3.4σ found in the most

recent KiDS-1000 analysis (van den Busch et al., 2022). This may imply that,

depending on the modelling choices, current weak lensing surveys, such as KiDS,

DES or HSC, may be overestimating the constraining power of their cosmic shear

measurements when neglecting to model the non-Gaussianities in the likelihood

caused by systematics or by cosmology-dependence in the cosmic shear uncertainty.

This work stresses the importance of testing the common assumption of Gaus-

sian likelihoods in realistic conditions, even for data vectors which in theory have

a Gaussian uncertainty. At the same time, we also highlight the potential of

simulation-based inference to rigorously perform Bayesian uncertainty propaga-

tion even when the models on the uncertainty of the signal or the systematics are

analytically intractable. On top of this, SBI with likelihood-based neural density

estimation comes with the added advantage that it does not require the expensive

reevaluation of the posterior distribution if the input measurements or priors are up-

dated, as would be the case for a standard MCMC analysis. Since the likelihood

for a given forward model is learnt independently of the input data and the priors,

SBI can significantly improve the efficiency of inference analysis where the forward

model is not changed between measurements.

We conclude that SBI is a powerful tool which may be able to tackle many

of the physical and statistical challenges which future galaxy surveys will face, as

their observations become more precise, less limited by statistical noise, and more

limited by the accurate modelling of systematics. To address this need, future work

should expand KIDS-SBI to also include other probes of large-scale structure such

as galaxy clustering and galaxy-galaxy lensing, while incorporating the modelling
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for the relevant systematic effects, such as magnification bias, non-linear galaxy

bias and field-level baryonic feedback.



Chapter 4

Consistency Testing of KiDS-Legacy

Modelling

Recent weak lensing analyses, such as the Kilo-Degree Survey (Asgari et al., 2021),

Dark Energy Survey (Amon et al., 2022) or Hyper-Suprime Cam survey (Li et al.,

2023), have relied on the assumption a of Gaussian likelihood for the cosmic shear

two-point statistics. Despite Chapter 3 indicating that the Gaussian likelihood as-

sumption might have some limitations in the context of cosmic shear, it is cur-

rently the standard assumption for any likelihood analysis of cosmic shear or galaxy

clustering data (Schneider & Hartlap, 2009; Sellentin & Heavens, 2018; Sellentin

et al., 2018; Taylor et al., 2019; Upham et al., 2021). Under such a presupposition,

the Gaussian likelihood is characterised by a covariance matrix (see Section 1.4.1)

which can be defined analytically or numerically.

Analytical error modelling has the advantage of being relatively efficient to

compute when making some idealising assumptions, while providing a clear under-

standing of how different effects are contributing to the noise. In contrast, numeri-

cally calculated covariance matrices are often computationally expensive to obtain

and may not offer clear insights into separate contributions to the noise. However,

they allow us to account for all known sources of statistical and systematic noise

which can be modelled numerically through simulations that may be intractable for

analytical models. The analyses of KiDS-1000 (Joachimi et al., 2021; Asgari et al.,

2021; Heymans et al., 2021) and DES-Y3 (Friedrich et al., 2020; Amon et al., 2022;

Abbott et al., 2022) opted for an analytical covariance validated against numerical



213

estimates, while HSC-Y3 (Li et al., 2023; Miyatake et al., 2023) opted for a nu-

merical approach derived from mock data vectors (Shirasaki et al., 2019) validated

against analytical estimates.

For upcoming galaxy surveys, this dilemma persists. As weak lensing mea-

surements become more precise with increasing sky coverage and depth of galaxy

surveys, such as Euclid (Laureijs et al., 2011), Rubin (LSST Science Collaboration

et al., 2009) and Roman (Spergel et al., 2015), the random uncertainty in the cosmic

shear measurements decreases. Then, previously unimportant systematic uncer-

tainties may become relevant in the error modelling. This can lead to previously

sufficient analytical models becoming intractable, while increasing the complexity

needed in numerical simulations. Regardless of the approach taken, it is always

necessary to cross-validate the error model with an independent approach.

This work aims to test the analytical model signal and noise modelling of the

cosmic shear signal as observed by the Kilo-Degree Survey against numerical sim-

ulations. Such an analysis is necessary in order to determine whether the assump-

tions made for the analytical covariance modelling in KiDS-1000 (Joachimi et al.,

2021) are sufficient in the context of the final data-release from the Kilo-Degree

Survey, also known as DR5 or KiDS-Legacy (see Li et al. 2022 for some prelimi-

nary discussions on this data-release). KiDS-Legacy improves upon KiDS-1000 by

adding an additional 350 deg2 of survey area (increasing the total to 1,350 deg2),

while also aiming to include source galaxies up to a photometric source redshift

of z ∼ 2 thanks to deeper i-band observations (Li et al., 2022). This is combined

with improvements in the data reduction, masking, galaxy weights, shear calibra-

tion, redshift calibration, etc. These improvements alter the sensitivity of the cosmic

shear measurements to systematic uncertainties, so it becomes important to reeval-

uate the assumptions made in the signal and uncertainty modelling of KiDS-1000.

Two important such systematics which are sometimes ignored in the analytical co-

variance model in KiDS-1000 is the geometry of the survey footprint area (see e.g.

Peebles 1973; Scharf & Lahav 1993) in the Gaussian covariance terms (see Sec-

tion 4.3 for details) and any observational depth anisotropies, i.e. variable depth



4.1. KiDS-Legacy-like Data and Calibration 214

(Heydenreich et al., 2020; Joachimi et al., 2021; Baleato Lizancos & White, 2023).

To test these, I employ the statistical forward simulation framework of KIDS-SBI

described in Chapter 3 to numerically characterise the covariance matrix with some

minor modifications.

This chapter is structured as follows. In Section 4.1, I discuss the expected

properties of the KiDS-Legacy data and the creation of the necessary mock data.

Section 4.2 explains the scope of the forward simulations and highlights any

changes made to the pipeline with respect to the simulations presented in Chap-

ter 3. Section 4.3 outlines the analytical and numerical uncertainty models for a

KiDS-Legacy-like analysis. Section 4.4 shows the results of the testing the signal

modelling, while Section 4.5 proposes a novel measure of changes in the uncertainty

model, and then proceeds to show the results of testing the uncertainty models. I

give some concluding remarks in Section 4.6.

4.1 KiDS-Legacy-like Data and Calibration

The testing of the cosmic shear signal and noise modelling for the final KiDS data

release, DR5 also known as KiDS-Legacy, requires many realisations of the data in

order to characterise the covariance. To achieve this, the forward simulations need

to be calibrated in a representative fashion. As KiDS DR5 is currently not available,

it is also necessary to create a realistic mock DR5 catalogue for the purposes of

calibration. Additionally, it is important to use a mock data catalogue to calibrate

the simulations, as to not undermine the blinding strategy for future cosmological

analyses of KiDS-Legacy cosmic shear measurements.

To address this, rather than using the KiDS DR4 catalogue (Kuijken et al.,

2019), the forward simulations’ inputs are instead calibrated from mock catalogues

generated from organised randoms (Johnston et al., 2021). Organised randoms em-

ploy Self-Organising Maps (SOMs; Kohonen 1990) in order to learn mappings be-

tween the anisotropies in the number of observed galaxies in a given part of the

sky to measures of different systematic effects in KiDS (e.g. atmospheric seeing,

stellar density, dust extinction, variations in the point-spread function, etc.). For a
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more detailed explanation, see Johnston et al. (2021). Once this mapping has been

made, this allows to account for systematics in the data more efficiently. However,

another more notable use for the application shown in this work is that the organised

randoms allow to create random realisations of a galaxy catalogue which have the

same underlying systematics as the real data on which it is trained. However, unlike

the real data catalogue, this allows to choose the underlying cosmological model

which avoids unblinding.

As the main goals of this analysis are to quantify the effects of the footprint

and the variable depth on the cosmic shear signal and noise as observed by KiDS-

Legacy, it is important to calibrate the relevant inputs to the simulations accordingly.

Firstly, one of the main expected improvements in KiDS-Legacy with respect to

KiDS-1000 is the increase in depth along the line-of-sight from a maximum source

photometric redshift of z = 1.2 to z ∼ 2 through the inclusion of an additional to-

mographic bin over that redshift range. This would boost the sensitivity of the

measurements to cosmic shear, but it also can significantly influence the sensitivity

of the shear measurements to systematic effects, such as variable depth. For this

reason, it is important that the forward simulations account for the additional depth.

KiDS-1000 (Asgari et al., 2021) used five tomographic bins for the source galaxy

population with their boundaries in z ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.2}. To forecast

any possible increases in the depth in the analysis of KiDS-Legacy cosmic shear

data, we choose the same tomographic binning scheme as for KiDS-1000, while

including an additional bin between z = 1.2 and z = 2.0. To incorporate the high-

redshift galaxies which populate this tomographic bin into the mock KiDS-Legacy

catalogue, the organised randoms have been trained on a version of the KiDS-1000

DR4 galaxy catalogue without the GOLD redshift selection applied, such that galax-

ies with z > 1.2 may be included.

Applying this binning scheme to the mock KiDS-Legacy galaxy catalogue, we

obtain the redshift distributions shown in Figure 4.1 for each of the six tomographic

bins. These redshift distributions have been obtained through a separate SOM which

maps the observed photometric redshifts to spectroscopic redshifts based on refer-
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Figure 4.1: Plot of the redshift distributions of the six KiDS-Legacy-like tomographic bins
(S1 to S6). The shaded areas show to limits of each tomographic bin, while
the solid lines show the n(z) of the source galaxies in each tomographic bin as
a function of both redshift, z, and comoving distance, χ (the latter is derived
assuming a Planck 2018 cosmology; Planck Collaboration et al. 2020). The
black dashed lines show the limits of the spherical matter shells in our forward
simulations.

ence spectroscopic samples, in accordance with the approach taken for KiDS-1000

(Wright et al., 2020a; Hildebrandt et al., 2021). We notice that the redshift distribu-

tion of the sixth tomographic bin, S6, is exceptionally broad which can significantly

impact its response to systematic effects when compared to narrower bins. All other

redshift distributions are virtually identical to the fiducial KiDS-1000 redshift dis-

tributions as defined in Hildebrandt et al. (2021) with only minor differences due

to sampling noise from the realisation of the organised randoms and the subsequent

retraining of the SOMs for redshift calibration.

With regards to the footprint, an accurate mask or footprint of the observed

area on the sky by KiDS-Legacy does not currently exist. To still be able to produce

useful predictions for KiDS-Legacy, we opt for the KiDS-1000 mosaic mask as

shown in Figure 3.1. This implies that the footprint of the forward simulations

only spans 1,000 deg2 (with an effective area of 773.3 deg2) instead of the expected

1,350 deg2 which are shown in Figure 4.2. This means that we expect the amplitude

of the noise on the cosmic shear signal to be overestimated as the effective area
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Figure 4.2: Spatial map of the expected KiDS DR5, i.e. KiDS-Legacy, and the KiDS
DR4/KiDS-1000 footprints. The green areas show the pointings which are
included in KiDS DR4, while both the green and the yellow pointings are in-
cluded in KiDS DR5. The purple pointings show the pointings which were
excluded, i.e. “de-scoped”, from the final KiDS data release. The top and bot-
tom panels show Cartesian projections of KiDS-North and KiDS-South fields,
respectively. Figure courtesy of Angus H. Wright and the KiDS team.

covered by the mocks is less than the expected KiDS-Legacy area. Nevertheless,

it is still sufficient to explore the effects of the geometry of the footprint. As can

be seen from Figures 3.1 and 3.9, the KiDS-1000 mosaic mask has many holes,

which can be of the size of whole pointings, stars or a few pixels. It is expected

that the KiDS-Legacy footprint will not feature any pointing-sized holes (shown in

yellow in Figure 4.2). In addition to this, the KiDS-Legacy footprint is going to

have a similar density of masked stars, transients or diffraction spikes at the sub-

degree scale as seen in KiDS-1000. With the expectation that the geometry of the

KiDS-Legacy data will only become less fractured than in KiDS-1000, the KiDS-

1000 footprint provides a conservative estimate for the complexity of the footprint

edges and holes. Hence, any estimates on the relative impact of the footprint on the

cosmic shear signal or noise can be viewed as upper limits for an equivalent KiDS-

Legacy analysis. Similarly, since the variance of the cosmic shear signal is expected

to approximately scale with the inverse of the survey footprint area, the estimated

uncertainties from the forward-simulations based on the KiDS-1000 footprint are

expected to be smaller than the true uncertainties of the cosmic shear signal as it

will be observed by KiDS-Legacy.
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4.2 Forward Simulations

The forward simulations pipeline in this work is based on the KIDS-SBI suite

of simulations described in Chapter 3. The pipeline allows to simulate realistic

galaxy shape and redshift catalogues based on log-normal random fields (see Sec-

tion 1.4.3.1) which encode cosmological large-scale structure in an efficient man-

ner. For the purposes of testing the signal and noise modelling for KiDS-Legacy,

the calibration of the inputs and the scope of the forward simulations from KIDS-

SBI differs significantly from the ones shown in Chapter 3 for the purposes of a

simulation-based inference analysis of KiDS-1000 cosmic shear.

In terms of the cosmic shear signal, two-point correlators are constructed such

that they are insensitive to the survey footprint geometry and size. Thus, the typical

assumption of a contiguous square footprint does not have an effect on the mean

signal. Another typical assumption in signal and noise models is that the sensi-

tivity of the galaxy survey is homogeneous and isotropic throughout the survey’s

footprint. In reality, as discussed in Chapter 3, the sensitivity and therefore obser-

vational depth can have spatial variations. This can be caused by variations in the

survey’s seeing, changes in sky transparency, variations in the amount of overlap-

ping pointings for a given position on the sky, etc. (see Section 3.2.8 for a more

detailed explanation). As these variations may have coherent spatial patterns, they

can induce additional modes into the two-point estimators which may have signif-

icant effects on the cosmic shear signal (Heydenreich et al., 2020; Joachimi et al.,

2021; Baleato Lizancos & White, 2023).

In the case of single-visit surveys, such as KiDS, this variability in depth can

be exacerbated further as a survey progresses over time, and obtains observations

over a larger time-span such that long-period transient changes in the depth imprint

themselves on the spatial variations of the galaxy observations. Note that for surveys

such as DES or LSST which visit each pointing in the sky at multiple points in time,

such variations decrease with time. Additionally, if one expands the redshift depth

of the galaxies taking into consideration for the cosmic shear analysis as is the case

for KiDS-Legacy, the sensitivity of the two-point correlators to the variations in
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depth may change. The inclusion of an additional sixth tomographic bin in KiDS-

Legacy implies the inclusion of more faint galaxies in the galaxy sample which are

affected by variations in depth. Due to selection effects, high-redshift galaxies also

tend to be closer to the magnitude limit of KiDS as they are more likely to be distant

and faint. As discussed in Section 4.1, the variations in depth are correlated with the

magnitude limit, so they may have strong effects on the galaxy population in a high-

redshift tomographic bin. Hence, despite previous analyses finding that the effect of

depth variability on the signal in KiDS-1000 is below its noise ceiling (Heydenreich

et al., 2020), this is not necessarily the case for KiDS-Legacy and reevaluation is

required.

The same applies for the uncertainty modelling for the cosmic shear measure-

ments in KiDS. The variation of the depth does not only introduce additional ran-

dom spatial variance across the sky, it also alters the local density and shape dis-

persion of galaxies which directly set the shape noise. Moreover, contrary to the

signal, the uncertainty of cosmic shear is not insensitive to the geometry of the sur-

vey footprint. The KiDS-1000 and KiDS-Legacy footprints, as seen in Figure 4.2,

are made up of two disjoint fields which are elongated along right ascension and

only cover about 10 deg each in declination. The KiDS-1000 mask contains many

holes of pointings. Although KiDS-Legacy is expected to include these missing

pointings, as with KiDS-1000, it is going to include many subdegree-sized holes

due to masked stars, diffraction spikes and other contaminants. For this reason, we

expect the KiDS-1000 mask to allow us to obtain reasonably compatible estimates

of the effect of survey geometry when incorporating an additional source bin, S6,

as will be the case in KiDS-Legacy.

To accomplish this, we put forth KIDS-SBI which employs log-normal ran-

dom matter fields to model the underlying cosmic shear signal and contaminate it

with the relevant systematics. These are adequate for this purpose, as log-normal

random fields accurately recover two-point statistics (Tessore et al., 2023), while

also including higher-order statistic information (Hall & Taylor, 2022) relevant for

covariance estimates. It is important to mention that the KIDS-SBI simulations
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Parameter Symbol Value
Hubble constant h 0.670

Cold dark matter density Ωc 0.276
Baryonic matter density Ωb 0.050

Curvature density Ωk 0
Scalar spectral index ns 0.960

Matter density fluctuation amplitude at 8 Mpc h−1 σ8 0.786
Dark energy equation of state w -1
Sum of the neutrino masses ∑mν 0.06 eV

Table 4.1: Fiducial choice of cosmological parameters within ΛCDM used for the forward
simulations to test the signal and noise modelling for KiDS-Legacy. The given
cosmology is equivalent to S8 ≡ σ8[(Ωb +Ωc)/0.3]1/2 = 0.82. The parameters
are set in accordance with the constraints from KiDS-1000 (Asgari et al., 2021),
while σ8 is set to be the mid-value between KiDS-1000 and Planck (Planck
Collaboration et al., 2020).

are constructed to reproduce two-point statistics, such that they are not necessarily

allow accurate validation of model for higher-order statistics.

4.2.1 Structure and Modelling Choices

The pipeline used in this analysis is based on the KIDS-SBI pipeline described

in Chapter 3. The pipeline is implemented within the Cosmological Survey Infer-

ence System (COSMOSIS; Zuntz et al. 2015) and based on the KiDS Cosmology

Analysis Pipeline (KCAP; Joachimi et al. 2021; Asgari et al. 2021; Heymans et al.

2021). Within this framework, we run approximately 5,000 realisations of three dif-

ferent survey settings following similar analysis choices as in Joachimi et al. (2021)

while assuming a fixed flat ΛCDM cosmology (see Table 4.1 for the chosen fidu-

cial cosmology), and only varying the random seed between realisations in order to

accurately sample cosmic variance.

As shown in the diagram in Figure 4.3, the cosmology dependence of all in-

stances of the forward simulations is set by calculating the linear three-dimensional

matter power spectrum, Pδ ,l, with CAMB (Lewis et al., 2000; Lewis & Bridle,

2002; Howlett et al., 2012) based on the parameters shown in Table 4.1. Although

analytical covariance models can consider non-linear matter power spectra, most

analytic covariance models (including the analytical model used in KiDS) do not

take into consideration the uncertainty in the non-linearities in the power spectrum
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Figure 4.3: Flowchart describing the steps in a single forward simulation of cosmic shear
observables from cosmological parameters used for the KiDS-Legacy signal
and uncertainty modelling. The dark blue rounded boxes represent the inputs
and outputs which are given to the simulation-based inference pipeline. The
green slanted boxes represent relevant quantities which are calculated during
the simulation. The grey rectangular boxes show steps in the calculations, while
the blue slanted boxes show any (systematic) effects which are included.
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due to baryonic feedback. Despite KIDS-SBI being capable of modelling the un-

certainty on the cosmic shear signal while including the contributions due to bary-

onic feedback, we evaluate both the analytical and numerical models assuming a

linear matter power spectrum. This ensures consistency between the models on the

treatment of the uncertainty on small scales. Hence, it allows us to isolate the effects

of observational systematics on the uncertainty model, even at small scales.

We note that the assumption of a linear matter power spectrum does not allow

us to account for any potential dependence of observational systematics, such as the

survey geometry and variable depth, on the non-linear contributions to the cosmic

shear signal from baryonic feedback and gravitational non-linearities. Moreover, it

also important to note that, in general, baryonic feedback cannot be ignored when

modelling realistic cosmic shear observations at small scales. Therefore, in order to

realistically model the signal and uncertainty expected in KiDS-Legacy, a necessary

extension to the work shown in this chapter is the re-evaluation of the analytical and

numerical models while assuming a non-linear matter power spectrum, as is the case

in the analysis shown Chapter 3. Having said this, due to limitations in the available

computational resources, this extension is outside of the scope of this work.

Upon setting the input matter power spectrum, we set the geometry of the sim-

ulations as a sphere made up of concentric shells which are discretised along the

line-of-sight and which place the observer at the centre. The dashed vertical lines

in Figure 4.1 show the boundaries in redshift/comoving distance space of the 22

shells between z = 0 and z = 3 which make up each simulation. As can be seen

in the figure, these shells are chosen such that they cover the entirety of the prob-

ability density mass of the KiDS-Legacy redshift distributions. At the same time,

the shells’ widths are determined such that they are narrow enough to accurately

represent the matter overdensity field along the line-of-sight, while also being wide

enough such that the assumption of log-normality of the fields remains accurate

(for widths of comoving distance, χ , less than 100Mpc/h this breaks down; Hall &

Taylor 2022; Piras et al. 2023).

Taking the kernels of each concentric shell of a fixed comoving volume, we
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project Pδ ,l into two-dimensional angular power spectra correlating the matter fields,

C(i j)
δδ

, within given shell pairs, (i j). C(i j)
δδ

is calculated using LEVIN (see Sec-

tion 3.2.3 for details). These angular two-point correlators between the 22 shells

set the cosmology dependence for the log-normal random matter fields within each

shell. To this end, KIDS-SBI implements the Generator for Large-Scale Struc-

ture (GLASS; Tessore et al. 2023) to efficiently sample the matter overdensity

field in each shell, δ (i), and the associated matter convergence fields, κ(i) (see Sec-

tions 1.4.3.1 and 3.2.4 for details on this calculation). As with non-linearities, at this

stage, we do not include any intrinsic alignments in the model as this not typically

fully considered in analytical uncertainty modelling. Up to this point, each of the

5,000 realisations only differs from the others through its seed used when sampling

the log-normal random matter field.

Once the matter and convergence fields are set, KIDS-SBI samples galaxy

positions and shapes in accordance with KiDS-Legacy’s survey characteristics with

the aid of Speedy Acquisition for Lensing and Matter Observables (SALMO;

Joachimi et al. 2021 and see Sections 3.2.6 and 3.2.7 for details). Here, we distin-

guish between three sets of forward simulations which each make different choices

about sample selections: Buceros (a KiDS-1000-sized idealised footprint with ho-

mogeneous and isotropic sensitivity), Cygnus (a realistic KiDS-1000 footprint with

homogeneous and isotropic sensitivity), and Egretta (a realistic KiDS-1000 foot-

print with realistic spatial variability in the selection of galaxies, i.e. variable depth).

The comparison between each of these simulation settings then allows to determine

the effects of the survey footprint geometry and variable depth on the cosmic shear

signal and uncertainty.

In the case of Buceros, we construct an idealised survey footprint which is a

square of approximately 28 deg × 28 deg with an equivalent area to the KiDS-1000

footprint (773.3 deg2). This is in line with the underlying assumption of survey area

of the cosmic variance terms in the analytic uncertainty model (the shape noise and

super-sample covariance terms in the analytical model take into account the real-

istic KiDS-1000 footprint, see Section 4.3.1). Along the line-of-sight, the galaxies
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Bin ngal σ ε/
√

2 angal bngal aσε
bσε

[arcmin−2] ×103

S1 0.62 0.27 -0.036 0.73 1.90 0.267
S2 1.18 0.26 -0.040 1.29 1.36 0.256
S3 1.85 0.27 -0.244 2.60 -0.90 0.280
S4 1.26 0.25 -0.254 2.03 -0.68 0.256
S5 1.31 0.27 -0.411 2.53 2.36 0.261
S6 0.57 0.29 -0.241 1.29 4.53 0.276

Table 4.2: Parameters used to sample galaxies and their shapes in line with the expecta-
tions for KiDS-Legacy for each tomographic bin (from S1 to S6). ngal is the
mean galaxy number density for a given tomographic bin, σ ε/

√
2 is the mean

per-component shape dispersion, angal and bngal are the slope and y-intercept, re-
spectively, for the linear interpolation of the galaxy density as a function of the
root-mean-square of the background noise in the KiDS catalogue, σrms, accord-
ing to Equation (3.30), while aσε

and bσε
are the parameters to linearly interpo-

late σε from σrms, according to Equation (3.31).

within each tomographic bin are sampled from the redshift distributions shown in

Figure 4.1 with a fixed galaxy density, ngal for each tomographic bin. The same

is the case when sampling the galaxies’ intrinsic ellipticities which are sampled as

Gaussian ellipticities assuming a fixed shape dispersion, σε , for each tomographic

bin. Table 4.2 shows the values obtained from the mock KiDS-Legacy catalogue

created with organised randoms.

For Cygnus, we follow the exact same procedure as for Buceros, assuming

the same redshift distributions, galaxy densities and shape dispersions. The only

difference is that Cygnus selects angular galaxy positions on the sky based on the

KiDS-1000 mask as shown in Figure 3.1.

With Egretta, the same mask as for Cygnus is used, but the assumption of

the homogeneity and isotropy of the galaxy selection function is dropped (see Sec-

tion 3.2.8). To model this, we choose the σrms value for each galaxy as given in

the mock KiDS-Legacy catalogue which gives the root-mean-square of the back-

ground noise signal in a given field. This we found to be a good indicator of the

local seeing, atmospheric transparency and signal-to-noise, so it can be considered

a good estimator of variable depth. In particular, as can be seen in Figure 4.4, σrms,

is uncorrelated with the r-band magnitude measurements of galaxies and their pho-
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Figure 4.4: Plots showing the underlying correlations of systematic effect parameters with
the magnitude measurements in the r-band, MAG GAAP r, the photometric
redshifts, Z B, and each other. These variables are the magnitude limit in the
r-band, MAG LIM r, and the root-mean square of the background noise in the
observations, “Level” or σrms. The black dots show the values of galaxies in
KiDS DR4 (Kuijken et al., 2019). The solid red lines show the running average,
while the dashed lines show the 1σ upper and lower bounds of the running
average. Figures courtesy of Angus H. Wright and the KiDS team.
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tometric redshift, while being highly correlated with the magnitude limit in the r-

band which KiDS uses for shape measurements. As σrms increases, the background

noise in a given observation is larger, so the local magnitude limit decreases and

less galaxies are observed. Hence, σrms can robustly predict the local observational

depth independently of the galaxy position and shape measurements.

To calibrate the depth variability from the mock KiDS-Legacy catalogue, we

bin each tomographic bin into ten equi-populated bins in σrms with their boundaries

in {1.70, 2.33, 2.57, 2.80, 3.04, 3.28, 3.52, 3.76, 4.00, 4.23, 12.96}. Then, we re-

calibrate ngal and σε from the galaxy population within each σrms independently. As

shown in Figure 4.5, for both parameters, the dependence on σrms is highly linear

for all six tomographic bins. Thanks to this, it is possible to linearly interpolate the

value ngal and σε at every point within the KiDS footprint for every tomographic bin

from a single spatial map of σrms as the one shown in Figure 3.8. Simultaneously,

the variability in the galaxy selection does not only imply that the galaxy density

and shape dispersion varies, but also the local redshift distribution. To account for

this, we reapply the SOM (Wright et al., 2020a) to estimate the photometric redshift

distribution for each σrms bin and tomographic bin independently. This yields 60

redshift distributions which are shown in Figure 4.6. The galaxy number in a pixel

and the true redshift of these galaxies is sampled in accordance with a different red-

shift distribution depending on the associated local σrms value in Figure 3.8. From

Figure 4.6, it is apparent that as observational conditions worsen and σrms increases,

the number of high-redshift galaxies detected decreases with respect to the number

of low redshift galaxies detected. Hence, this shifts the mean of the source redshift

distributions which can affect cosmological parameter estimates. In addition, par-

ticularly for S1 and S6, the depth variability adds additional fluctuations into the

redshift distributions beyond just shifting the mean, which may impact the signal

and the noise.

It is important to highlight that, despite the forward simulations presented in

this work resembling the ones used in the analysis shown in Joachimi et al. (2021)

in scope, they bring forth significant differences and improvements. Firstly, thanks
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Figure 4.5: Plots showing the dependence of the per-component Gaussian shape disper-
sion, σε/

√
2, (top panel) and the galaxy density, ngal, (bottom panel) on the

root-mean square of the background noise, σrms in the KiDS-Legacy-like mock
catalogue. For both panels, the data points represent the mean σε or ngal of ten
equi-populated bins in σrms. The solid line shows the linear fit to the afore-
mentioned data points of their respective tomographic bin according to Equa-
tions (3.30) and (3.31). The parameters of this fit for each tomographic bin
are shown in Table 4.2. The dotted horizontal lines show the mean values of
σε and ngal calculated from the galaxy samples with variable depth per tomo-
graphic bin, while the dashed horizontal lines show the values of σε and ngal
for the respective galaxy samples without any spatial variations in the observa-
tional depth. Both of these lines agree exceptionally well by construction, but
some negligible deviations may occur due to rounding errors.
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Figure 4.6: In the upper panels, plot of the normalised redshift distributions, P(z), for each
tomographic bin (S1 to S6). The redshift distribution from the entire KiDS-
Legacy-like mock catalogue constructed from the organised randoms (Johnston
et al., 2021), Ptotal(z), is shown in black, while the other ten redshift distribu-
tions are derived from 10 equi-populated subsamples of the mock catalogue
based on their observational depth (i.e. the mean value of the root-mean-square
of the background noise, σ rms) which is shown with its respective colour. The
lower panels show the associated residual change in the redshift distributions
with respect to Ptotal(z) per unit redshift. It is apparent that variable depth
mostly affects the source distributions at high redshifts, while the effect tends
to decrease the mean of the redshift distribution with increasing σrms.

to better computational efficiency, the resolution along the line-of-sight is increased

from 18 shells to 22. Furthermore, instead of using FLASK (Xavier et al., 2016),

KIDS-SBI integrates GLASS (Tessore et al., 2023) to compute log-normal ran-

dom matter fields which are more efficient, while achieving better accuracy in the

two-point statistics of the simulated fields. When it comes to the galaxy sampling,

the redshift distributions as well as the values of ngal and σε have been recalibrated

in line with KiDS DR4 rather than the values used in Joachimi et al. (2021) which

are based on KiDS DR3. This also implies that the redshift distributions in this

work are based on the SOM (Wright et al., 2020a) rather than the kth nearest neigh-

bour approach used in KiDS DR3 (Hildebrandt et al., 2017) which has been found

to be less robust (Wright et al., 2020b). Lastly, the most substantial change with re-

spect to previous analyses (Heydenreich et al., 2020; Joachimi et al., 2021; Johnston

et al., 2021) is the abandonment of the magnitude limit in the r-band, MAG LIM r,

as the main parameter to quantify variable depth. MAG LIM r is measured r-band
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magnitude at 5σ above background in a 2” aperture at a given object’s location. As

is shown in Figure 4.4, although MAG LIM r is a direct measure of the magnitude

limit in the band in which galaxies are selected, the measurement of MAG LIM r

is highly correlated with the r-band magnitude measurement of galaxies, while

also being correlated with the galaxies’ photometric redshift. This implies that

MAG LIM r does not only depend on the survey characteristics and the observa-

tional conditions, but it depends also on cosmological measurements. Thus, cali-

brating the anisotropy of the galaxy selection function using MAG LIM r artificially

amplifies the cosmological signal in the galaxy sample. Instead, “Level”, σrms, is a

more unbiased estimator of the anisotropy of any survey-specific systematic effect.

“Level”, σrms, is the root-mean-square of the background pixel counts measured at

a given object’s location. We find that σrms does not correlate significantly with the

measured r-band magnitude or redshift, while being highly correlated with the r-

band magnitude limit. Consequently, in the case of KiDS, “variable depth” is not an

entirely accurate term, instead it can be considered a “variable background noise”

which leads to associated variations in the depth.

For all of the above mentioned reasons, it is not only necessary to reevaluate the

signal and noise modelling in KiDS due to the improved fidelity of KiDS-Legacy

with respect to KiDS-1000, but also because it is necessary to determine whether the

improvements with respect to previous tests allow to reach consistent conclusions.

4.2.2 Summary Statistics

Upon generating 15,000 KiDS-Legacy-like galaxy position and shape catalogues

(5,000 realisations of each setting: Buceros, Cygnus and Egretta), we measure the

shear two-point correlation functions (2PCF, ξ̂±) as defined in Equation (1.96) using

TREECORR (Jarvis et al., 2004). For this we follow the approach laid out in Giblin

et al. (2021) and Joachimi et al. (2021) to ensure consistency. For each realisation,

ξ̂± is initially measured for the KiDS north (N) and south (S) fields separately with

300 log-spaced bins between θ = 0.1 arcmin and θ = 300 arcmin. The ξ̂± for each

field are then combined as follows
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ξ̂
(i j)
± (θ) =

N(i j)
pairs,N ξ̂

(i j)
±,N(θ)+N(i j)

pairs,S ξ̂
(i j)
±,S(θ)

N(i j)
pairs,N +N(i j)

pairs,S

, (4.1)

where N(i j)
pairs,N and N(i j)

pairs,S are the number of galaxy pairs between galaxy popula-

tion i and j within the north and the south fields, respectively, while ξ̂
(i j)
±,N(θ) and

ξ̂
(i j)
±,S(θ) are the measured shear two-point correlation functions between samples i

and j from the north and south fields, respectively. ξ̂
(i j)
± (θ) is re-binned such that

the domain covers nine log-spaced bins between θ = 0.1 arcmin and θ = 300 ar-

cmin giving the measurements shown in Figure 4.7. All three suites of simulations

produce highly consistent two-point statistic measurements which all agree that the

overall signal amplitude in the S6 tomographic bin can be expected to be approx-

imately twice as large as the signal seen in the correlations with the S5 bin. This

hints at KiDS-Legacy having the potential of significantly improving cosmological

constraining power when compared to KiDS-1000.

4.3 Uncertainty Modelling

4.3.1 Analytical Uncertainty

Analytical uncertainty modelling is a powerful and widely adopted approach across

weak lensing surveys (Asgari et al., 2021; Amon et al., 2022). Here, we test the

approach adopted in KiDS-1000 (Joachimi et al., 2021) to determine whether it

is apt for KiDS-Legacy. The analytical model operates under the assumption of

a Gaussian likelihood (see Section 1.4.1). In that framework, all the uncertainty

modelling is contained within the covariance matrix which relates the variances

and cross-correlations of the values in the measured data vector. For a two-point

statistic, such as ξ̂
(i j)
± (θ)≡ ⟨ε(i)ε( j)⟩, the covariance is defined as follows

Cov(ξ̂ (i j)
± , ξ̂

(mn)
± )≡ ⟨(ε(i)ε( j)−⟨ε(i)ε( j)⟩)(ε(m)

ε
(n)−⟨ε(m)

ε
(n)⟩)⟩ (4.2)

= ⟨ε(i)ε(m)⟩⟨ε( j)
ε
(n)⟩+ ⟨ε( j)

ε
(m)⟩⟨ε(i)ε(n)⟩

+ U4

(
ε
(i),ε( j),ε(m),ε(n)

)
. (4.3)
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Figure 4.7: Measurements of the mean two-point correlation functions, ξ±, as a function
of angular separation, θ , between 5,000 realisations of KiDS-Legacy-like mock
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depth. The black dot-dahsed lines show the measurement for Buceros, the red
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where U4 is a Ursell or connected correlation function of four random variables.

The first two terms in Equation (4.3) are commonly known as the Gaussian

covariance terms as they are the only terms which remain in the covariance of

the two-point statistics describing a Gaussian field. It is important to distinguish

nomenclature at this stage, when referring to the Gaussanity of terms in the covari-

ance of two-point statistics, it is a separate characterisation than the assumption of

a Gaussian likelihood. Both Gaussian and non-Gaussian terms in the covariance

assume that the likelihood distribution is a multivariate Gaussian with respect to the

two-point data vector. The distinction between Gaussian and non-Gaussian (NG)

terms in the covariance, such as the third term in Equation (4.3), refers to whether

they depend on two-point correlators alone or on higher-order correlators, respec-

tively. Here, the term Gaussian is used because a two-point correlator fully defines

a Gaussian random field.

Taking into consideration that ξ̂
(i j)
± includes intrinsic shape noise as given by

Equation (1.97), one can decompose a given Gaussian term as follows

⟨ε(i)ε(m)⟩⟨ε( j)
ε
(n)⟩ ∝ O(ξ 2)+O(ξ 1)+O(ξ 0), (4.4)

where the terms of order O(ξ 0) are known as shot noise (SN) terms, the O(ξ 1)

terms is known as the mixed terms, and the O(ξ 2) terms account for sampling

variance (SVA) contribution due to observing a finite volume of the Universe.

In addition to these terms, there are some additional effects which are typically

considered in the analytical covariance model. The measured shear values, ε , are

affected by a multiplicative bias which, when calibrated (Giblin et al., 2021), has as-

sociated uncertainties. To propagate these uncertainties into the likelihood, an addi-

tional term is added to the covariance. However, since the sky position dependence

of the multiplicative shear bias scales most strongly with the local signal-to-noise

ratio, its position dependence is already captured directly by the random noise. Any

additional contribution from the multiplicative shear bias should not vary with the

survey footprint, this term is ignored for the purposes of this analysis. Lastly, due to

correlations between modes within the survey and the modes on scales larger than
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the survey footprint, there is an additional non-Gaussian contribution to the covari-

ance known as the super-sample covariance (SSC; see e.g. Takada & Hu 2013;

Linke et al. 2023).

To summarise, the analytical covariance model can be decomposed as follows

Cov(ξ̂±, ξ̂
′
±) = CovSN +Covmixed +CovSVA +CovNG +CovSSC. (4.5)

For details on the definitions and parametrisations made to define the terms in

Equation (4.5), see Joachimi et al. (2021). We note that the shape noise and super-

sample covariance terms take into consideration the realistic KiDS-1000 footprint,

while the other cosmic variance terms only take into consideration the effective

survey area and neglect any boundary effects due to the survey geometry. Conse-

quently, the analytical model is most comparable to the Cygnus forward simulations

with the exception of the cosmic variance terms which are more consistent with the

model in Buceros.

4.3.2 Numerical Uncertainty

To model the uncertainty for KiDS-Legacy numerically, we compute the numerical

covariance for each of the simulation suites described in Section 4.2 as follows

Cov(ξ̂±, ξ̂
′
±) =

1
Nsim −1

Nsim

∑
i
(ξ̂±, i −⟨ξ̂±⟩)(ξ̂

′
±, i −⟨ξ̂ ′

±⟩), (4.6)

where Nsim is the total number of realisations of a given simulation suite, ξ̂±, i is

the measured two-point correlation function of a single realisation and ⟨ξ̂±, i⟩ is the

measurements from all Nsim realisations.

Applying this to the 5,000 realisations of the three simulation settings, Buceros,

Cygnus and Egretta, we obtain the covariance matrices shown in Figures 4.9, 4.10,

and 4.11, respectively. As expected, the matrices are dominated by the diagonal

terms which are dominated by the shape noise. It is also of note that for all three

settings the terms in the covariance are noticeably larger by up to a factor of two in

correlations with the S6 bin when compared to correlations with S5 or below.
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Figure 4.8: Bitmap of the KiDS-Legacy-like analytic covariance matrix. The upper left
panels show the ξ+-ξ+ covariance for all tomographic bin combinations, with
each pixel showing the value for a single log-spaced bin in angular separation,
θ , between θ = 0.1 arcmin and θ = 300 arcmin. The upper right and lower
left panels show the same, but for the covariance between ξ+ and ξ−, while the
lower right panels show the covariance of ξ− with itself.
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Figure 4.9: Bitmap of the covariance matrix terms as computed from 5,000 numerical re-
alisations of KiDS-Legacy-like Buceros (idealised footprint and homogeneous
galaxy selection). The upper left panels show the ξ+-ξ+ covariance for all to-
mographic bin combinations, with each pixel showing the value for a single
log-spaced bin in angular separation, θ , between θ = 0.1 arcmin and θ = 300
arcmin. The upper right and lower left panels show the same, but for the co-
variance between ξ+ and ξ−, while the lower right panels show the covariance
of ξ− with itself.
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Figure 4.10: Bitmap of the diagonal covariance matrix terms as computed from 5,000 nu-
merical realisations of KiDS-Legacy-like Cygnus (realistic footprint and ho-
mogeneous galaxy selection). The upper left panels show the covariance be-
tween ξ+ measurements from tomographic bins S1 to S6, with each pixel
showing the value for a single log-spaced bin in angular separation, θ , be-
tween θ = 0.1 arcmin and θ = 300 arcmin. The upper right and lower left
panels show the same, but for the covariance between ξ+ and ξ−, while the
lower right panels show the covariance of ξ− with itself.
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Figure 4.11: Bitmap of the diagonal covariance matrix terms as computed from 5,000 nu-
merical realisations of KiDS-Legacy-like Egretta (realistic footprint, and in-
homogenous and anisotropic galaxy selection). The upper left panels show
the covariance between ξ+ measurements from tomographic bins S1 to S6,
with each pixel showing the value for a single log-spaced bin in angular sep-
aration, θ , between θ = 0.1 arcmin and θ = 300 arcmin. The upper right and
lower left panels show the same, but for the covariance between ξ+ and ξ−,
while the lower right panels show the covariance of ξ− with itself.
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4.4 Testing the Signal Model

4.4.1 Impact of the Spatial Footprint

Comparing the signal estimates obtained from the Buceros and Cygnus simulations

as defined in Section 4.2, one can verify whether the two-point statistics are truly

robust to the geometry of the footprint as they are expected to be from their con-

struction. Figure 4.12 shows the difference in the mean of two-point correlation

function measurements between Cygnus and Buceros. For all tomographic bins,

the signal difference is consistent with zero up to angular separations of θ ∼ 20

arcmin. Beyond these scales, the signal difference appears to increase as a function

of the signal amplitude up to a ∼ 5% effect at scales near 300 arcmin. Based on

the construction of two-point correlation functions, this should not be possible, and

as a matter of fact, this is not a physical effect. This is an artifact of the precision

settings chosen when computing the 2PCF.

When computing the 2PCF as defined in Equation (1.96) using TREECORR,

one can adjust the maximum possible error in the angular separation a galaxy pair

can have as a fraction of the bin size (bin slop). The larger this error is allowed to

be, the faster is the computation of the 2PCF, but the accuracy is reduced. In the

case of the simulations shown in this work, for the sake of computational efficiency,

this parameter has been set to 1.5 times the angular separation between bins (which

can imply an error in angular separation of up to 4.7 degrees in the high angular

separation bins). This is necessary because computing the 2PCFs for a single reali-

sation with a given selection takes ∼ 15 minutes with multi-threading on 32 cores.

When scaling this up to 15,000 realisations, this implies about 4,000 CPU hours

with 32 cores. For comparison, running TREECORR for a single realisation while

setting the allowed error threshold in angular separation to zero entails a run-time

of 2.6 hours per realisation using 64 cores for multi-threading. Consequently, in-

creasing the fidelity of the 2PCF calculations for all realisations is currently limited

by the efficiency and availability of computational resources.

Upon measuring the 2PCF from 50 realisations of Cygnus and Buceros while

setting bin slop = 0, we find that the excess in signal from Cygnus with respect to
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Figure 4.12: Difference between the mean shear two-point correlation functions, ξ±(θ), as
measured from 5,000 realisations of Cygnus and from 5,000 realisations of
Buceros with the same underlying cosmology and seeds. The uncertainties
shown are the propagated uncertainties of the difference of the means. Each
panel shows the difference in signal for a given tomographic bin pair of the
bins from S1 to S6.



4.5. Testing of the Uncertainty Model 240

Buceros at θ > 20 arcmin vanishes. We can conclude that 2PCF are robust against

the choice of survey geometry as expected, but this may not necessarily be the case

for numerical biases when computing the 2PCF. Buceros is defined by a footprint

given by a 28 deg × 28 deg square and Cygnus is defined by two disjoint fields of

approximately 10 deg × 90+ deg each. In the former case, the maximum separation

between galaxies in the sample is approximately 40 deg, while for the latter it is

about 90 deg. Hence, the sensitivity to the choice of bin slop can vary significantly

between samples, and induce significant biases in the measured 2PCF signal.

4.4.2 Impact of Spatial Variability

Conducting a similar comparison between the measured 2PCF from the Egretta

and Cygnus forward simulations, one can isolate the effect of variable depth on the

measured signal for a given survey footprint. This is shown in Figure 4.13. We find

that for almost all tomographic bin combinations and scales, the difference in signal

is roughly consistent with zero. There are some 1σ to 2σ excesses and reductions in

the measured signal at some scales, for a few bin combinations, due to the inclusion

of variable depth. However, these could just be due to random noise or could be due

to inaccuracies from the choice of bin slop as discussed in Section 4.4.1.

From Figure 4.13, we also conclude that the observed effect of variable depth

on the signal is broadly consistent with the predictions from the semi-analytical

model from Heydenreich et al. (2020) which is parametrised with the same choices

as described in Section 4.2. Hence, we conclude that depth variability is an insignif-

icant effect for the signal modelling for KiDS-Legacy, since the effect on the signal

is less than 1% which is below the expected relative random uncertainties.

4.5 Testing of the Uncertainty Model

4.5.1 Quantifying Changes in the Uncertainty

To test the uncertainty modelling for KiDS-Legacy, we compare the analytical

model described in Section 4.3.1 with the numerical uncertainty modelling as de-

fined in Section 4.3.2. A simple way to compare covariance matrices is to concen-

trate on the diagonal elements of the covariance which define the standard deviation
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Figure 4.13: In blue, the difference between the mean shear two-point correlation func-
tions, ξ±(θ), as measured from 5,000 realisations of Egretta and from 5,000
realisations of Cygnus with the same underlying cosmology and seeds. The
uncertainties shown are the propagated uncertainties of the difference of the
means. The orange lines show the expected difference in the measured sig-
nal due to the inclusion of equivalent depth variability as given by the semi-
analytical estimates form the model presented in Heydenreich et al. (2020).
Each panel shows the difference in signal for a given tomographic bin pair of
the bins from S1 to S6.
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of a given data vector element with itself. However, when attempting to compare

off-diagonal elements in the covariances, it is often difficult to quantitatively assess

how changes in the correlation factor of the covariance are going to affect the final

uncertainty. Visual assessment of the changes in the individual elements between

two covariance matrices is of course useful, but they do not necessarily give an

understanding of the impact such a shift might have in the final constraints, par-

ticularly, for high-dimensional covariance matrices. For this purpose, we propose

a novel summary statistic to compare covariance matrices based on their relative

Förstner-Moonen distance (Förstner & Moonen, 2003).

Förstner-Moonen distance, dFM, is a measure of the distance between two sym-

metric positive definite matrices, AAA and BBB, on a Riemannian manifold of n × n-

dimensional real, symmetric, positive definite matrices, and is defined as follows

dFM(AAA,BBB) =

√
n

∑
i

ln2[λi(AAA,BBB)], (4.7)

where λi(AAA,BBB) is the ith root of the following equation

det(λAAA−BBB) = 0. (4.8)

The Förstner-Moonen distance has properties which make it useful for the pur-

pose of comparing covariance matrices. Firstly, it assumes that the matrices are

square, real, symmetric and positive definite, as we expect to be the case for co-

variance matrices. Secondly, dFM is always positive and it is only zero if AAA = BBB.

Additionally, dFM is invariant under commutation, i.e. dFM(AAA,BBB) = dFM(BBB,AAA), it is

invariant under congruence transformations, i.e. dFM(AAA,BBB) = dFM(XXXAAAXXXT ,XXXBBBXXXT )

for any real, n× n matrix, XXX , and it is invariant under inversion, i.e. dFM(AAA,BBB) =

dFM(AAA−1,BBB−1). Hence, any change in dFM can be attributed to translations of AAA

with respect to BBB along the eigenvector basis of BBBAAA−1 on a Riemannian manifold

of all symmetric, real, positive definite matrices with the same dimensions. As

dFM(AAA,BBB) increases, the two matrices are less compatible and sit further away from

each other in the hyperspace of all possible real, symmetric and positive definite
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matrices. In the context of covariance matrices, such changes are effectively equiv-

alent to variations in the principal components basis between the two matrices, such

that, if dFM(AAA,BBB) ∼ 0, the covariance matrices AAA and BBB have similar information

contents and constraining power. More details and proofs of the properties of dFM

can be found in Förstner & Moonen (2003).

Despite these useful properties of dFM(AAA,BBB), it can be difficult to interpret

whether the nominal value of dFM(AAA,BBB) is significant or not. To account for this,

we propose a measure which relies on the relative Förstner-Moonen distance as

follows

∆dFM(AAA,BBB;k)≡ dFM(AAA,BBB)−dFM[AAA,AAA
′
(AAA,k)], (4.9)

where AAA
′
(AAA,k) is a modified version of matrix AAA as a function of the scalar, k ∈ R,

which is defined as

AAA
′
(AAA,k)≡ (1+ k)AAA, (4.10)

Therefore, AAA
′
(AAA,k) is a matrix with the same eigenvectors as AAA, but all of its eigen-

values are scaled by a factor of 1+ k. By substituting Equation (4.10) into Equa-

tion (4.8), we obtain

det
(
λAAA−AAA

′)
= 0 (4.11)

det
(
[λ − (1+k)]AAA

)
= 0 (4.12)

[λ − (1+ k)]n det(DDD) = 0 (4.13)

[λ − (1+ k)]n
n

∏
i

λAAA, i = 0, (4.14)

where DDD is the diagonalised matrix containing the real eigenvalues of AAA as its di-

agonal elements and PPP is the matrix of the associated unique eigenvectors of AAA,

such that AAA = PPPDDDPPP−1, λAAA, i are the eigenvalues of AAA which make up the diagonal

elements of DDD. For non-zero λAAA, i, the solution to Equation (4.14) is that λ = 1+ k
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for all eigenvalues. Therefore, the Förstner-Moonen distance between AAA and AAA
′

becomes

dFM(AAA,AAA
′
) =

√
n

∑
i

ln2[1+ k] =
√

n ln2(1+ k). (4.15)

Note that Equation (4.15) is independent of the eigenvalues and eigenvectors

of AAA and AAA
′
. Hence, for a given k, dFM(AAA,AAA

′
) = dFM(BBB,BBB

′
). Instead, it only depends

on the factor k and the dimensionality of AAA. Consequently, Equation (4.9) becomes

∆dFM(AAA,BBB;k) = dFM(AAA,BBB)−
√

n ln2(1+ k). (4.16)

With this, ∆dFM(AAA,BBB;k) can be interpreted as a measure of the excess FM dis-

tance between two matrices with respect to the FM distance between two matrices

in the same basis with eigenvalues scaled by a factor of 1+ k.

This is useful as it allows to measure the relative information content of the

covariance matrix. For a covariance matrix, AAA, one can show that the entropy, S,

contained by the Gaussian multivariate probability distribution defined by the co-

variance, scales as S ∝ log2|AAA|= log2|DDD|= log2|∏n
i λAAA,i|= ∑

n
i log2|λAAA,i| (Grainger,

2013). Therefore, the act of scaling of the eigenvalues of a covariance matrix by a

factor of 1+k increases its entropy by n log2|1+k|. An increase in entropy implies

more noise and uncertainty. Thus, if ∆dFM(AAA,BBB;k) is zero, the dFM between AAA and

BBB is the same as the dFM between two covariance matrices whose entropy differs by

log2|1+ k| per data vector element.

To harness this fact, rather than using ∆dFM(AAA,BBB;k) directly as a measure, we

opt to use the value of k which minimises ∆dFM(AAA,BBB;k) such that

kmin(AAA,BBB)≡ argmin
k∈R

[∆dFM(AAA,BBB;k)]. (4.17)

To summarise, kmin is therefore an approximate measure of the value of k for

which d2
FM(AAA,BBB) = n ln2(1+k). In other words, it is the approximate scaling which

would have to be applied to the principal components of a covariance matrix for the

Förstner-Moonen distance to change by the same amount as the Förstner-Moonen
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distance between covariance matrix AAA and covariance matrix BBB. Alternatively, kmin

can be interpreted as a measure of the change in entropy, ∆S, between each covari-

ance matrix, given by

∆S ≡ S
′ −S ≈ n log2|1+ kmin|. (4.18)

To quantify any systematic uncertainty in the kmin metric defined in Equa-

tion (4.17), we explore the distribution of ∆dFM near the minimum kmin. As shown

in the example in Figure 4.14, we generally find that, for the covariance matrices

considered in this work, ∆dFM increases monotonically with both increasing and

decreasing values of k. Although the analytic expression for ∆dFM is currently un-

known and beyond the scope of this work, we choose to fit a Lorentzian distribution

to ∆dFM(k) near kmin in order to quantify how quickly ∆dFM approaches its mini-

mum using the following equation

∆dFM(k)≈ A− B
π

1
2Γ

(k− kmin)2 −
(

1
2Γ

)2 , (4.19)

where A is the value of ∆dFM where the gradient of distribution approaches zero, B

is the amplitude of the distribution and Γ is the full-width half maximum (FWHM)

of the distribution. This fitting is useful as Γ allows us to quantify the width of the

trough around kmin, and hence measure how degenerate kmin is with other values of

k nearby. If Γ → 0, the gradient of ∆dFM approaches infinity and the distribution

becomes a Dirac delta distribution centred at kmin. Alternatively, if Γ → ∞, the

gradient of ∆dFM goes to 0, so kmin is fully degenerate with all other values of k.

Any values of Γ in between can be interpreted as an inverse measure of the gradient

near kmin and hence a measure of how degenerate the value of ∆dFM(kmin) is with

values of dFM(k) near the minimum.

4.5.2 Tests of the Analytic Covariance

To ascertain the accuracy of the fiducial analytic uncertainty model used in KiDS-

1000 described in Section 4.3.1 in the context of KiDS-Legacy, we compare the
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Figure 4.14: Plots of the relative Förstner-Moonen distance, ∆dFM, between two sets of
covariance matrices from Buceros and Cygnus as a function of the fractional
change in the reference matrix, k. The top panel shows ∆dFM between the
Cygnus and Buceros covariance matrices when considering only the first five
KiDS-1000 tomographic bins, while the bottom panel shows the same when
considering all six KiDS-Legacy-like tomographic bins. The dashed vertical
lines show the values of kmin for a given covariance matrix pair. The data
points show the values of ∆dFM(k) near kmin at intervals in k of 0.005. The
solid lines show the Lorentzian fit given by Equation (4.19) of the data points,
while the associated shaded region of the same colour shows the FWHM of
the Lorentzian around kmin.
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Figure 4.15: Relative difference between the standard deviations calculated from the diag-
onal elements of the analytic covariance of cosmic shear two-point correlation
functions, Cov[ξ±(θ),ξ±(θ)], and the covariance as calculated from 5,000 re-
alisations different mocks (Buceros in dashed lines, Cygnus in solid lines, and
Egretta in dotted lines), as a function of angular separation, θ , in arcmin. The
orange lines show the relative differences between Cov[ξ+(θ),ξ+(θ)], while
the blue lines show the same for Cov[ξ−(θ),ξ−(θ)]. Each panel shows the
difference in signal for a given tomographic bin pair of the bins from S1 to
S6.
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Figure 4.16: Bitmap of the difference in the correlation coefficients, ∆ρ , between the an-
alytic covariance matrix (see Figure 4.8), and the covariance matrix from
Cygnus (realistic footprint, and homogeneous galaxy selection; shown in Fig-
ure 4.10). The upper left panels show ∆ρ for ξ+- ξ+, with each pixel showing
the value for a single log-spaced bin in angular separation, θ , between θ = 0.1
arcmin and θ = 300 arcmin. The upper right and lower left panels show the
same, but for the change in correlation between ξ+ and ξ−, while the lower
right panels show the change in correlation of ξ− with itself.
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Figure 4.17: Bitmap showing the kmin measure from comparing the analytical covariance
matrix, Cov(ξ±,ξ±), and the Cov(ξ±,ξ±) as calculated from Cygnus as four
separate blocks. The uncertainties given for each kmin are a measure of the
potential degeneracy of kmin as given by Γ/2 as shown in Equation (4.19),
where Γ → 0 implies that kmin is unique and Γ → ∞ implies that kmin is not a
unique minimum. The left 4×4 bitmap shows kmin when only considering the
covariance terms which correlate the uncertainties from tomographic bins S1
to S5 (as in KiDS-1000). The right 4×4 bitmap shows kmin when considering
all covariance terms from tomographic bins S1 to S6 (as in KiDS-Legacy).
Lighter panels imply that the given block of the analytical covariance matrix
is overall less noisy than CovCygnus, darker green panels imply the reverse.

analytical covariance matrix as shown in Figure 4.8 with the numerical covariance

matrices obtained from mock observations as described in Sections 4.2 and 4.3.2.

Firstly, we compare the analytical covariance, Covtheory, to the covariance obtained

from 5,000 realisations of the Cygnus forward simulations shown in Figure 4.10,

CovCygnus. These simulations assume a realistic KiDS-1000 footprint, while ne-

glecting any spatial variations in the observational depth. As shown in Figure 4.15,

we find that the diagonal elements of both covariance matrices agree at percent-

level at all scales and for all tomographic bin combinations. The agreement is ex-
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ceptionally good (less than 5%) at small to medium scales. This is not surprising, as

the diagonal terms in the analytical model are dominated by shape noise (Joachimi

et al., 2021), and the shape noise amplitude is mostly dependent on the survey area,

which is the same in both models by construction. We also highlight that the agree-

ment between the uncertainties from Cygnus and the analytical model is similar for

all bin combinations, including the sixth bin. Therefore, when including the sixth

tomographic bin, the analytic uncertainty model is similarly accurate as when only

including five tomographic bins.

Figures 4.16 and 4.17 compare the entirety of Covtheory and CovCygnus. Fig-

ure 4.16 shows that, despite the diagonal covariance terms agreeing exceptionally

well between Cygnus and the analytic model, the off-diagonal terms in the ξ+−ξ+

covariance can have changes in their correlation coefficients of order 10−1. This

indicates a slight inconsistency between the numerical simulations and the analytic

model in the covariance terms typically dominated by the Gaussian mixed term and

the super-sample covariance. Despite the analytic SSC taking into consideration the

survey geometry, this may be a consequence of the analytic comic variance model

not taking it into consideration which may bias the mixed term and/or change the

contributions from the sampling variance. These findings are in line with previous

tests of the KiDS-1000 analytic uncertainty model against mocks (Joachimi et al.,

2021).

From the generally good agreement between these two models, we also con-

clude that the underlying assumptions in the modelling of Cygnus within KIDS-

SBI are broadly consistent with the assumptions made within analytical model.

In other words, under the assumption of a Gaussian likelihood, the simulated log-

normal random fields from KIDS-SBI recover the signal and the variance of the

2PCF with a similar level of accuracy to current analytical models. This is consis-

tent with the findings in Chapter 3.

As evidenced by Figure 4.17, the inclusion of the sixth tomographic bin does

not cause major changes in the agreement between the Cygnus and the analytic mod-

els. The exception to this is the ξ+−ξ+ block of the covariance where kmin = 18%
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when considering five tomographic bins, while kmin =−17% when considering the

six KiDS-Legacy-like tomographic bins. This implies that the inclusion of the sixth

tomographic bin causes the analytic covariance matrix to be less noisy overall than

the one computed from Cygnus, while the reverse is the case when excluding the

sixth bin. Although this effect seems small, it is of note as it indicates that the an-

alytic uncertainty model becomes less conservative when including the sixth bin,

so it may be underestimating the uncertainty of the cosmic shear signal in ξ+ with

respect to the uncertainty estimates from Cygnus.

Moreover, we note that the ξ±− ξ∓ matrix blocks in Figure 4.17 consistently

have a kmin near 100%. This is an expected consequence because the measure can

only reconcile both matrices by scaling all terms in the Cygnus covariance matrix

to near zero, as predicted by the analytical model. The terms in the ξ±−ξ∓ blocks

of the covariance matrix from Cygnus can be orders of magnitude larger than the

equivalent terms in the analytic covariance due to random variations in the numeri-

cal realisations.

Repeating the same comparison of the analytic model against the covariance

matrix from Buceros (see Figure 4.9), we find the agreement between the two mod-

els changes as expected. Figure 4.15 shows that the standard deviation in both ξ+

and ξ− is consistently approximately 10% smaller across all scales in the Buceros

model than in the analytic model. The diagonal terms are dominated by the shape

noise which in the analytical model considers the realistic KiDS-1000 survey ge-

ometry, while in Buceros only matches the effective survey area without matching

the survey geometry. This underlines the importance of accurately modelling the

survey geometry in the analytical shape noise model.

When comparing the entirety of the covariance matrix from Buceros to the

analytical model in Figure 4.18, we find that the discrepancy in the correlation co-

efficients is generally not as pronounced as it was when compared to Cygnus in

Figure 4.16. This illustrates that the off-diagonal terms of the analytical covariance

matrix appear to be in better agreement with a model which does not consider a re-

alistic survey geometry. The small discrepancies observed are most likely caused by
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Figure 4.18: Bitmap of the difference in the correlation coefficients, ∆ρ , between the an-
alytic covariance matrix (see Figure 4.8), and the covariance matrix from
Buceros (idealised footprint , and homogeneous galaxy selection; shown in
Figure 4.9). The upper left panels show ∆ρ for ξ+- ξ+, with each pixel show-
ing the value for a single log-spaced bin in angular separation, θ , between
θ = 0.1 arcmin and θ = 300 arcmin. The upper right and lower left panels
show the same, but for the change in correlation between ξ+ and ξ−, while
the lower right panels show the change in correlation of ξ− with itself.
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Figure 4.19: Bitmap showing the kmin measure from comparing the analytical covariance
matrix, Cov(ξ±,ξ±), and the Cov(ξ±,ξ±) as calculated from Buceros as four
separate blocks. The uncertainties given for each kmin are a measure of the
potential degeneracy of kmin as given by Γ/2 as shown in Equation (4.19),
where Γ → 0 implies that kmin is unique and Γ → ∞ implies that kmin is not a
unique minimum. The left 4×4 bitmap shows kmin when only considering the
covariance terms which correlate the uncertainties from tomographic bins S1
to S5 (as in KiDS-1000). The right 4×4 bitmap shows kmin when considering
all covariance terms from tomographic bins S1 to S6 (as in KiDS-Legacy).
Lighter panels imply that the given block of the analytical covariance matrix
is overall less noisy than CovBuceros, darker green panels imply the reverse.

the fact that the analytical model considers the realistic KiDS-1000 survey footprint

when computing the contributions due to the super-sample covariance.

With that said, Figure 4.19 shows that the values of kmin when comparing the

analytical covariance matrix versus the one from Buceros are virtually the same as

the kmin when comparing it against Cygnus (see Figure 4.17). Hence, the relative

difference in entropy between the analytical and numerical model is unaffected by

the consideration of the realistic footprint or lack thereof. The same is the case for

the sensitivity of the constraints to the inclusion of the sixth tomographic bin.
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Figure 4.20: Bitmap of the difference in the correlation coefficients, ∆ρ , between the an-
alytic covariance matrix (see Figure 4.8), and the covariance matrix from
Egretta (realistic footprint, and inhomogeneous and anistropic galaxy selec-
tion; shown in Figure 4.11). The upper left panels show ∆ρ for ξ+- ξ+, with
each pixel showing the value for a single log-spaced bin in angular separation,
θ , between θ = 0.1 arcmin and θ = 300 arcmin. The upper right and lower
left panels show the same, but for the change in correlation between ξ+ and
ξ−, while the lower right panels show the change in correlation of ξ− with
itself.
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To finalise our assessment of the accuracy of the analytical covariance matrix,

we compare it against the most general numerical model: Egretta. Egretta includes

the realistic KiDS-1000 footprint (as is the case for some terms of the analytical

covariance), but also takes into account variable depth. Even though both models

consider the shape noise’s dependence on the survey footprint, we observe a consis-

tent bias of approximately 10% in the diagonal terms of the covariance matrix due

to variable depth (Figure 4.15). This implies that the lack of variable depth in the

noise model may similarly bias the shape noise as the lack of consideration for the

survey geometry (see Section 4.5.4 for a detailed discussion of this). Nevertheless,

this discrepancy is not substantial, while implying that the analytical model is more

conservative. When comparing the entirety of the covariance matrix in Figure 4.20,

we find that the change in correlation coefficients is slightly larger overall than the

one observed between the analytic and Cygnus model. Hence, the analytical model

still appears to slightly underestimate the noise contributions from the off-diagonals

when compared to the Egretta model. This again seems to be driven by the analytic

model’s lack of consideration of the survey footprint in the cosmic variance terms.

Overall, we find that the analytic model for uncertainty on the cosmic shear sig-

nal from KiDS-1000 is broadly in agreement with the numerical uncertainty model,

particularly, Cygnus. Even when removing the realistic survey geometry from or

including variable depth in the numerical model, the discrepancies with the analytic

model are consistently less than 15%, and insensitive to the inclusion of an addi-

tional KiDS-Legacy-like tomographic bin. Hence, even with the improvements of

the forward simulations and the inclusion of an additional tomographic bin, these

findings are consistent with previous tests of the analytic KiDS-1000 uncertainty

model (Joachimi et al., 2021).

4.5.3 Impact of the Spatial Footprint

To test the impact of the assumption an idealised square footprint on the noise mod-

elling when compared to a realistic footprint geometry, we compare the numerical

covariances computed from the Buceros (based on an idealised square footprint) and

Cygnus (based on the realistic KiDS-1000 footprint of the same area as in Buceros)
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following the prescription described in Section 4.3.2. From one realisation to the

next, the seed of the sampled matter field and galaxies tracing the overdensities is

changed to account for cosmic variance. We use the same 5,000 seeds for both

Buceros and Cygnus, so they both encode the same cosmic variance.

Figure 4.21 shows the difference between standard deviations from Cygnus

and Buceros. This shows that the diagonal elements of the KiDS-Legacy cosmic

shear covariance increase by up to around 20% when considering a realistic survey

footprint. To be more precise, the covariance of ξ− increases by about 5% at small

scales and by up to 20 to 30% at large scales for most of the tomographic bin combi-

nation considered. This increase is consistent with what was found for KiDS-1000

(see Fig. D.2 in Joachimi et al. 2021). When looking at the covariance of ξ+ in-

stead, we find that, at small scales (within the bounds of the footprint dimensions),

the standard deviation increases by about 10% throughout all tomographic bin com-

binations. However, after θ ∼ 20 arcmin, the excess in the standard deviation is

consistently smaller than 10% (with the exception of the first tomographic bin). For

many tomographic bin pairs, the variance in ξ+ at scales of θ ∼ 102 arcmin is in

fact smaller in Cygnus than in Buceros. Although the signal at these scales may be

slightly biased due to the choice of bin slop in TREECORR (see Section 4.4.1), this

is again consistent with the findings in previous studies for KiDS-1000 (Joachimi

et al., 2021). From this, we conclude that at large scales the effect of the survey

footprint on the cosmic shear uncertainty is negligible, particularly, in the tomo-

graphic bin combinations with the highest signal-to-noise ratio. This is consistent

with the fact that both Buceros and Cygnus probe large scales in a similar fashion as

their survey areas are by construction the same. Hence, the difference in the survey

geometry (the addition of holes and edges) only drives changes in the uncertainty

in the cosmic shear signal at small to medium scales.

Therefore, from Figure 4.21, we can conclude that, despite the updates in the

simulation pipeline highlighted in Section 4.2.1, the conclusions from KiDS-1000

about the impact of the footprint on the uncertainty modelling still hold. At the same

time, we note that the changes in the standard deviation observed for tomographic
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Figure 4.21: Relative difference between the standard deviations calculated from the
diagonal elements of the covariance of two-point correlation functions,
Cov[ξ±(θ),ξ±(θ)], as measured from 5,000 realisations of Cygnus and
from 5,000 realisations of Buceros, as a function of angular separa-
tion, θ , in arcmin. The orange lines show the relative differences
between Cov[ξ+(θ),ξ+(θ)], while the blue lines show the same for
Cov[ξ−(θ),ξ−(θ)]. Each panel shows the difference in signal for a given
tomographic bin pair of the bins from S1 to S6.
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bin combinations which include the KiDS-Legacy sixth bin do not significantly dif-

fer from the changes observed for any of the other tomographic bins. Nevertheless,

as discussed in Section 4.5, the diagonal elements may not necessarily give the full

picture.

To assess the impact of the choice of survey footprint on the covariance ma-

trix as a whole, we calculate the difference between the covariance matrices from

Cygnus and Buceros as shown in Figure 4.22. It becomes apparent that despite the

terms in most diagonals increasing from Buceros to Cygnus, in many off-diagonal

terms, this is not the case. Particularly, some of the off-diagonal terms which are

typically dominated by the Gaussian mixed term or the super-sample covariance

decrease due to the assumption of a realistic footprint. To evaluate the aggregate ef-

fect on the constraining power of the covariance based on all these terms changing

in tandem, we utilize the kmin measure presented in Section 4.5.1.

Figure 4.23 shows the kmin(CovCygnus,CovBuceros) calculated individu-

ally for each 9 × 9 block matrix for a given pair of tomographic bins,

(i j), within the covariance matrices, Cov[ξ (i j)
± (θ),ξ

(i j)
± (θ)]. We see that

kmin[CovCygnus(ξ
(i j)
+ ,ξ

(i j)
+ ),CovBuceros(ξ

(i j)
+ ,ξ

(i j)
+ )] indicates that the constraining

power from ξ
(i j)
+ decreases substantially with a realistic footprint when i, j > 3,

while when i ≤ 3 and j ≤ 3 simultaneously, the opposite is the case. This

is a good example of how the changes in the diagonals of the covariance ma-

trix may not be representative of the effect the whole covariance has in ag-

gregate: from Figure 4.21, one would expect the constraining power to reduce

similarly for all tomographic bin combinations, yet this is not the case when

considering Figure 4.23. This becomes even more apparent when considering

kmin[CovCygnus(ξ
(i j)
− ,ξ

(i j)
− ),CovBuceros(ξ

(i j)
− ,ξ

(i j)
− )]. Almost for all tomographic bin

combinations, the constraining power of ξ− improves with the adoption of a real-

istic footprint in Cygnus. A notable exception to this is the sixth tomographic bin

which becomes significantly more noisy in ξ
(i j)
− for (i j)∈{(63), (64), (65), (66)}.

Although this is consistent with the noise increase seen in ξ
(55)
− , the uncertainty

change in ξ
(63)
− , ξ

(64)
− and ξ

(65)
− is much larger than for other off-diagonal tomo-
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Figure 4.22: Bitmap of the difference in the correlation coefficients, ∆ρ , between Cygnus
(realistic footprint, and homogeneous galaxy selection; shown in Figure 4.10),
and Buceros (idealised footprint , and homogeneous galaxy selection; shown
in Figure 4.9). The upper left panels show ∆ρ for ξ+- ξ+, with each pixel
showing the value for a single log-spaced bin in angular separation, θ , be-
tween θ = 0.1 arcmin and θ = 300 arcmin. The upper right and lower left
panels show the same, but for the change in correlation between ξ+ and ξ−,
while the lower right panels show the change in correlation of ξ− with itself.
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Figure 4.23: Bitmap showing the kmin measure between the diagonal blocks of the co-
variance matrix calculated from the Cygnus simulations, CovCygnus (see Fig-
ure 4.10), and the covariance matrix calculated from the Buceros simulations,
CovBuceros (see Figure 4.9). Lighter panels imply that the given block of
CovCygnus is overall less noisy than CovBuceros, darker green panels imply the
reverse. The second colourbar shows the difference in the entropy, ∆S, associ-
ated with a given kmin for n = 9 (i.e. each block matrix in a given panel being
made up of 9× 9 elements). Each panel gives kmin for a given tomographic
bin combination of the bins from S1 to S6.
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Figure 4.24: Bitmap showing the kmin measure from comparing the Cov(ξ±,ξ±) as calcu-
lated from Cygnus and the Cov(ξ±,ξ±) as calculated from Buceros as four
separate blocks. The uncertainties given for each kmin are a measure of the
potential degeneracy of kmin as given by Γ/2 as shown in Equation (4.19),
where Γ → 0 implies that kmin is unique and Γ → ∞ implies that kmin is not
a unique minimum. The fits from which Γ is estimated are shown in Fig-
ure 4.14. The left 4× 4 bitmap shows kmin when only considering the co-
variance terms which correlate the uncertainties from tomographic bins S1 to
S5 (as in KiDS-1000). The right 4× 4 bitmap shows kmin when considering
all covariance terms from tomographic bins S1 to S6 (as in KiDS-Legacy).
Lighter panels imply that the given block of CovCygnus is overall less noisy
than CovBuceros, darker green panels imply the reverse.
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graphic bin combinations in ξ−. This points at the fact that the combination of a

broad redshift distribution in S6 combined with a relatively low galaxy density and

high shape dispersion may cause a more substantial response in the uncertainty of

ξ
(6 j)
− . Having said this, the overall loss of constraining power in ξ

(6 j)
− for j > 2 is

not significantly larger than the increase observed in the covariance of ξ+.

To quantify more precisely how the sensitivity to the survey footprint ge-

ometry is altered when including S6, we calculate kmin between the covari-

ances from Cygnus and from Buceros, once for a KiDS-1000 set of covari-

ances which only include bins S1 to S5, and once again for a KiDS-Legacy-like

set of covariances including six tomographic bins. Figure 4.24 shows that the

kmin(CovCygnus(ξ+,ξ+),CovBuceros(ξ+,ξ+)) goes from 40% to 43% when includ-

ing S6 in the uncertainty model. This points to the sensitivity to the survey footprint

in the uncertainty of ξ+ not substantially increasing in KiDS-Legacy. This is less so

the case for the kmin of Cov(ξ−,ξ−) and Cov(ξ+,ξ−). Its sensitivity to the footprint

appears to be significantly altered by the inclusion of the sixth bin. However, as can

be seen from Figure 4.22, for these terms, the changes in the correlation coefficients

are not significant. Thus, the substantial changes in kmin are caused by large relative

changes in the covariance matrix terms which are insignificant in absolute terms, as

the values of most terms in question are near zero.

4.5.4 Impact of Spatial Variability

To test the impact of spatial variability of the galaxy selection or variable depth on

the uncertainty model, we repeat the tests discussed in Section 4.5.3, but instead

compare the covariance matrix obtained from the realisation of Egretta to the other

simulation suites (Cygnus and Buceros). Egretta not only takes into consideration

a realistic survey footprint geometry based on KiDS-1000 like Cygnus, it also con-

siders that within this footprint the selection function of galaxies is inhomogenous

and anisotropic, i.e. the sensitivity to galaxies varies as a function of angular po-

sition on the sky. To isolate this effect on its own, we first compare Egretta to

Cygnus as is shown in Figures 4.27, 4.28 and 4.29. The first thing to note here is

the counter-intuitive apparent reduction in the diagonal elements and many of the
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off-diagonal elements of the covariance when including variable depth. A priori,

one might assume that the additional spatial variation in the galaxy density and in

the shape dispersion would increase the covariance terms. Upon closer inspection,

one realises that this need not necessarily be the case.

In Figure 4.28, we see that variable depth does not seem to have a significant

impact on the covariance matrix, even including S6. Nevertheless, the diagonal

terms shown in Figure 4.27 are suppressed throughout due variable depth. These

terms are typically dominated by shape noise which is precisely why we observe a

reduction in these terms due to variable depth. Figure 4.25 shows the distribution of

the parameter used to calibrate variable depth across the KiDS footprint, σrms, based

on the map shown in Figure 3.8. From Figure 4.25, we see that the distribution of

σrms is heavily skewed with a tail going into the high σrms values. Consequently,

the median σrms is below the mean σrms by approx. 7× 10−4. This skew implies

that, despite the pixels in the sky in Egretta having the same mean value of σrms as

the patches in Cygnus, there are considerably more pixels which have low values

of σrms. From Figures 4.5 and 4.6, it becomes apparent that the majority of pixels

in the footprint have a shape dispersion, σε , below average, a galaxy density, ngal,

above average, and a redshift distribution with a mean above average. Consider-

ing that the covariance due to shape noise scales to first order approximately with

σ2
ε /ngal ∝ σ3

rms (Kaiser, 1992, 1998), one can estimate the approximate reduction in

the shape noise due to a shift of −7×10−4 in σrms as shown in Figure 4.26. These

estimates imply a shift of up to −7% in the standard deviation across all scales.

Additionally, the covariance terms do not vary linearly with ngal or σrms which in-

duces higher-order contributions that may reduce the covariance terms further. We

remark that this is an inherent feature of the KiDS data, as the selection presented

here (including the values shown Figures 3.8 and 4.25) is entirely calibrated from

the KiDS DR4 data.

Again, Figure 4.29 gives a slightly different picture. It appears that, despite the

decrease in many covariance terms due to variable depth, the constraining power

is decreasing of the blocks in the covariance matrix along the diagonals, with
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kmin[CovEgretta(ξ
(i j)
± ,ξ

(i j)
± ),CovCygnus(ξ

(i j)
± ,ξ

(i j)
± )] increased for most tomographic

bin combinations (with only a few exceptions). Thus, this indicates that the addi-

tional spatial variations in the galaxy density, shape dispersion and redshift distribu-

tions due to variable depth end up increasing the overall uncertainties on the cosmic

shear two-point correlation function measurements.

Importantly, we note that the uncertainty on the measurements which include

the sixth tomographic bin in KiDS-Legacy, S6, does not appear to be dispropor-

tionately affected by variable depth. The terms in Cov(ξ (6 j)
+ ,ξ

(6 j)
+ ) seems to be

similarly affected by variable depth as the terms in Cov(ξ (5 j)
+ ,ξ

(5 j)
+ ). At same time,

there appears to be a trade-off between Cov(ξ (6 j)
− ,ξ

(6 j)
− ) being more noisy than in

Egretta. The inverse appears to be the case for tomographic bin combinations with

the fifth bin.

Similarly, as for the survey footprint, in Figure 4.30, we find that

kmin(CovEgretta(ξ+,ξ+),CovCygnus(ξ+,ξ+)) goes from −21% to −23% when in-

cluding S6 in the uncertainty model. Similarly, for Cov(ξ−,ξ−)) terms, kmin

changes from 27% to 31%. This points to the sensitivity to the depth variability in

the uncertainty of ξ+ and ξ− not varying substantially when including the sixth to-

mographic bin. The variation in the other kmin terms changes more substantially, but

from Figure 4.28, this can be attributed to large relative variations in the covariance

matrix blocks where the values of most terms are near zero, namely, Cov(ξ+,ξ−))

and Cov(ξ−,ξ+)), as shown in Figures 4.10 and 4.11.

Finally, we compare the covariances obtained from Egretta and Buceros di-

rectly in order to determine whether compounding the effects of a realistic footprint

and variable depth at the same time affects the uncertainty model differently. Fig-

ures 4.31, 4.32 and 4.33 show the results of this comparison using the previously

discussed metrics.

Figures 4.31 and 4.32 align well with the previous comparisons of Cygnus

against Buceros, and Egretta against Cygnus. The differences between Egretta

and Buceros are dominated by the contributions due to the footprint geometry and

match well the changes seen in Section 4.5.3. Hence, when comparing Egretta and
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Figure 4.25: Histogram of the number of pixels on the KiDS-1000 footprint (see Fig-
ure 3.8) as a function of the root-mean square of the background noise, σrms.
The solid vertical line marks the mean σrms of the distribution, while the
dashed vertical line marks the median σrms.
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Figure 4.26: Plot of the ratio of σ
′
egr., the approximate shape noise contribution in Egretta

after a shift of −7×10−4 in root-mean square of the background noise, σrms,
over σegr., the approximate shape noise contribution in Egretta before the shift,
as a function of the tomographic bin pair. The bin pairs are all 21 unique
combinations of the six KiDS-Legacy tomographic bins.
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Figure 4.27: Relative difference between the standard deviations calculated from the
diagonal elements of the covariance of two-point correlation functions,
Cov[ξ±(θ),ξ±(θ)], as measured from 5,000 realisations of Egretta and from
5,000 realisations of Cyngus, as a function of angular separation, θ , in arcmin.
The orange lines show the relative differences between Cov[ξ+(θ),ξ+(θ)],
while the blue lines show the same for Cov[ξ−(θ),ξ−(θ)]. Each panel shows
the difference in signal for a given tomographic bin pair of the bins from S1
to S6.
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Figure 4.28: Bitmap of the difference in the correlation coefficients, ∆ρ , between Egretta
(realistic footprint, and inhomogeneous and anisotropic galaxy selection;
shown in Figure 4.11), and Cygnus (realistic footprint , and homogeneous
galaxy selection; shown in Figure 4.10). The upper left panels show ∆ρ for
ξ+- ξ+, with each pixel showing the value for a single log-spaced bin in an-
gular separation, θ , between θ = 0.1 arcmin and θ = 300 arcmin. The upper
right and lower left panels show the same, but for the correlation between ξ+

and ξ−, while the lower right panels show the covariance of ξ− with itself.
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Figure 4.29: Bitmap showing the kmin measure between the diagonal blocks of the co-
variance matrix calculated from the Egretta simulations, CovEgretta (see Fig-
ure 4.11), and the covariance matrix calculated from the Cygnus simulations,
CovCygnus (see Figure 4.10). Lighter panels imply that the given block of
CovEgretta is overall less noisy than CovCygnus, darker green panels imply the
reverse. The second colourbar shows the difference in the entropy, ∆S, associ-
ated with a given kmin for n = 9 (i.e. each block matrix in a given panel being
made up of 9× 9 elements). Each panel gives kmin for a given tomographic
bin combination of the bins from S1 to S6.
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Figure 4.30: Bitmap showing the kmin measure from comparing the Cov(ξ±,ξ±) as cal-
culated from Egretta and the Cov(ξ±,ξ±) as calculated from Cygnus as four
separate blocks. The uncertainties given for each kmin are a measure of the
potential degeneracy of kmin as given by Γ/2 as shown in Equation (4.19),
where Γ → 0 implies that kmin is unique and Γ → ∞ implies that kmin is not a
unique minimum. The left 4×4 bitmap shows kmin when only considering the
covariance terms which correlate the uncertainties from tomographic bins S1
to S5 (as in KiDS-1000). The right 4×4 bitmap shows kmin when considering
all covariance terms from tomographic bins S1 to S6 (as in KiDS-Legacy).
Lighter panels imply that the given block of CovEgretta is overall less noisy
than CovCygnus, darker green panels imply the reverse.

Buceros, it is unsurprising to find that the correlation coefficients in the covariance

have mostly increased as expected from having assumed a realistic footprint. All

this is consistent with tests done with mocks for KiDS-1000 (Joachimi et al., 2021).

Figure 4.33 is consistent with this picture, and shows that the contributions to

the uncertainty due to variable depth and due to the survey geometry cancel each

other out to an extent that the constraining power of the covariance matrix from

Buceros and Egretta is relatively similar (at least when compared to Cygnus). Note

that this does not imply that these two matrices ought to have similar constraints
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on cosmology, as despite the change in total information being similar, the degen-

eracies in the likelihood of the cosmological parameters may still be considerably

affected.

Notably, when comparing the covariance matrices in their entirety in Fig-

ure 4.34, we find that the inclusion of the sixth tomographic bin does not signif-

icantly affect the conjoint sensitivity to both the survey footprint geometry and

variable depth at the same time.

Lastly, in this instance, the sixth tomographic bin from KiDS-Legacy again

does not stand out from the other tomographic bins. Therefore, based on the ex-

pected redshift distribution, galaxy density and shape dispersion for S6, we do not

expect that its inclusion in KiDS-Legacy would significantly alter the sensitivity to

the assumptions in the analytic uncertainty model with respect to the measurements

from KiDS-1000.

4.6 Conclusions

In this chapter, we presented a novel pipeline of forward simulations of cosmic

shear two-point statistics focused on testing the assumptions made in the signal and

uncertainty modelling for the upcoming KiDS data release, KiDS DR5 or KiDS-

Legacy. This pipeline makes some key improvements over previous works which

improve the overall accuracy, while including an additional sixth tomographic bin

to extend the depth along the line-of-sight further than in KiDS-1000. Moreover,

we show that the calibration of the model for variable depth used in KiDS-1000

is not solely dependent on survey characteristics and can bias cosmology. Alter-

natively, we suggest, implement and test a new unbiased calibration procedure to

model variable depth.

From these forward simulations, we confirm that the two-point correlation

functions are unbiased estimators of the cosmic shear signal when varying the ge-

ometry of the survey footprint. However, we note that this is not always the case,

as numerical uncertainties may become relevant at large scales if the numerical pre-

cision is inadequate. We also determine that the bias in the cosmic shear signal
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Figure 4.31: Relative difference between the standard deviations calculated from the
diagonal elements of the covariance of two-point correlation functions,
Cov[ξ±(θ),ξ±(θ)], as measured from 5,000 realisations of Egretta and
from 5,000 realisations of Buceros, as a function of angular separa-
tion, θ , in arcmin. The orange lines show the relative differences
between Cov[ξ+(θ),ξ+(θ)], while the blue lines show the same for
Cov[ξ−(θ),ξ−(θ)]. Each panel shows the difference in signal for a given
tomographic bin pair of the bins from S1 to S6.
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Figure 4.32: Bitmap of the difference in the correlation coefficients, ∆ρ , between Egretta
(realistic footprint, and inhomogeneous and anisotropic galaxy selection ;
shown in Figure 4.11), and Buceros (idealised footprint , and homogeneous
galaxy selection; shown in Figure 4.9). The upper left panels show ∆ρ for ξ+-
ξ+, with each pixel showing the value for a single log-spaced bin in angular
separation, θ , between θ = 0.1 arcmin and θ = 300 arcmin. The upper right
and lower left panels show the same, but for the correlation between ξ+ and
ξ−, while the lower right panels show the covariance of ξ− with itself.
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Figure 4.33: Bitmap showing the kmin measure between the diagonal blocks of the co-
variance matrix calculated from the Egretta simulations, CovEgretta (see Fig-
ure 4.11), and the covariance matrix calculated from the Buceros simulations,
CovBuceros (see Figure 4.9). Lighter panels imply that the given block of
CovEgretta is overall less noisy than CovBuceros, darker green panels imply the
reverse. The second colourbar shows the difference in the entropy, ∆S, associ-
ated with a given kmin for n = 9 (i.e. each block matrix in a given panel being
made up of 9× 9 elements). Each panel gives kmin for a given tomographic
bin combination of the bins from S1 to S6.
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Figure 4.34: Bitmap showing the kmin measure from comparing the Cov(ξ±,ξ±) as calcu-
lated from Egretta and the Cov(ξ±,ξ±) as calculated from Buceros as four
separate blocks. The uncertainties given for each kmin are a measure of the
potential degeneracy of kmin as given by Γ/2 as shown in Equation (4.19),
where Γ → 0 implies that kmin is unique and Γ → ∞ implies that kmin is not a
unique minimum. The left 4×4 bitmap shows kmin when only considering the
covariance terms which correlate the uncertainties from tomographic bins S1
to S5 (as in KiDS-1000). The right 4×4 bitmap shows kmin when considering
all covariance terms from tomographic bins S1 to S6 (as in KiDS-Legacy).
Lighter panels imply that the given block of CovEgretta is overall less noisy
than CovBuceros, darker green panels imply the reverse.

in KiDS-Legacy caused by variable depth is < 1% and consistent with the semi-

analytical predictions from Heydenreich et al. (2020).

To test the uncertainty modelling in KiDS-Legacy, we propose and derive a

novel measure to compare two covariance matrices: kmin. It is an indicator of the

difference in the overall entropy between the probability density distributions de-

fined by two different covariance matrices. We then apply this measure to test the

analytic uncertainty model, while also ascertaining the effect that the geometry of

the survey footprint and variable depth have on the uncertainty.
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Firstly, we determine that the KiDS-1000 analytic uncertainty model is over-

all in good agreement with the numerical model when similar assumptions about

the survey geometry are made in both, even when including a sixth KiDS-Legacy-

like tomographic bin. At the same time, we conclude that the exclusion of variable

depth in the uncertainty model only causes minor biases in the analytical model

which can be neglected at the precision level of stage III surveys such as KiDS.

However, we note that neglecting the survey geometry in the off-diagonal cosmic

variance terms of the cosmic shear covariance matrix may bias the analytic uncer-

tainty model when compared to numerical modelling. We note that the impact on

the constraining power due to this bias can vary strongly depending on the number

of tomographic bins considered in the cosmic shear analysis. To determine the im-

pact this would have on the constraints of cosmological parameters, further work

is needed to forecast the impact of these choices in the covariance model on the

posterior distributions.

When isolating different modelling choices in the forward-simulations, we find

that, although the choice of footprint geometry can have a significant effects on the

uncertainty model, it does not exceed previous results for KiDS-1000, even when

including the sixth tomographic bin. This is also the case for variable depth where

its impact on the overall uncertainty does not largely vary when including an addi-

tional tomographic bin. Hence, we conclude that the sensitivity of the uncertainty

to survey geometry and variable depth is largely unaffected by the inclusion of an

additional tomographic bin between redshifts of 1.2 and 2.0.

With this analysis, we also conclude that the inclusion of variable depth in the

modelling reduces the diagonal terms of the covariance of the cosmic shear signal,

despite variable depth causing additional spatial variance in the galaxy positions,

redshifts and shapes. This previously unobserved effect arises due to the shape of

the frequency distribution of the root-mean square of the background noise, σrms,

i.e. a measure of local observational depth. Depending on the symmetry of this

distribution, the measured mean galaxy density and galaxy shape dispersion do not

fully characterise the distribution. Consequently, as the shape noise varies with σ3
rms
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and other noise terms respond non-linearly to changes in the galaxy density, any

small skewness in the distribution can produce large changes in the uncertainty. We

find that in the KiDS-1000 data, this distribution is asymmetric such that the median

and the mode are below the mean. In consequence, the inclusion of variable depth in

the uncertainty model unbiases the estimation of the galaxy density which reduces

the shape noise and other near-diagonal terms in the cosmic shear covariance by ap-

proximately 10%. Other current and upcoming galaxy surveys which have different

relations between observational depth and galaxy density/galaxy shape dispersion

may encounter smaller/larger effects on the estimated uncertainty. In any case, this

highlights the importance of forecasting the effects of variable depth on the uncer-

tainty of the cosmic shear signal.

Having said that, the overall constraining power is still reduced by variable

depth as the spatial variation introduces stronger correlations between the off-

diagonal terms in the covariance of cosmic shear 2PCF. Lastly, we also find that

the effects on the noise model due to the inclusion of variable depth and due to the

adoption of a realistic footprint at least partially counteract each other. In conse-

quence, the obtained constraints when including both systematics in the uncertainty

model can appear to be better than the constraints from an uncertainty model which

only includes one of the two effects. Throughout, we find the results are consistent

with the tests conducted for KiDS-1000 (Joachimi et al., 2021), even when includ-

ing the sixth tomographic bin.

Hence, we reach the conclusion that the analytical uncertainty modelling es-

tablished for KiDS-1000 is sufficient for the sensitivity of KiDS-Legacy. However,

this analysis is based on preliminary redshifts distributions, galaxy densities and

galaxy shape dispersions which are subject to change when KiDS DR5 is finalised.

In addition, the forward simulations assume a KiDS-1000-like footprint which is

smaller than the KiDS-Legacy footprint, while having a more complex geometry.

Accordingly, it will be necessary to reevaluate the analysis shown in this chapter

once KiDS DR5 and the KiDS-Legacy mask are available.



Chapter 5

Conclusions

In this thesis, I show different ways in which forward models can be used to bet-

ter understand large-scale structure observables to test cosmological models, and

improve our understanding of gravity, dark matter and dark energy.

Firstly, I present a novel method, MAGBET, to estimate the magnitude of the

magnification bias observed in the galaxy-galaxy lensing and galaxy clustering sig-

nals from galaxy surveys which are not flux-limited. The method involves cali-

brating the observed luminosity function slope from N-body simulations which in-

corporate the complex selection function of the galaxy survey in question. I apply

this method to estimating the magnification bias in the BOSS DR12 data, and these

are implemented in the KiDS-1000 3x2pt analysis (Heymans et al., 2021) and the

KiDS-1000 LRG sample analysis (Fortuna et al., 2021). I also forecast the impacts

which the magnification bias may have on the galaxy-galaxy lensing measurements

from combining KiDS-1000, HSC Wide and Euclid sources with BOSS or DESI

lenses. I find that next-generation galaxy-galaxy lensing analysis may be able to

detect magnification directly, and use it as an additional probe for testing astrophys-

ical and cosmological models.

Secondly, I outline a new suite of efficient and accurate forward simulations

of cosmic shear observables, KIDS-SBI, which include all relevant systematics

considered in a standard KiDS cosmic shear analysis. The KIDS-SBI forward

simulations include a novel module to compute non-Limber projections of angular

correlation functions (LEVIN), implement an efficient code to generate accurate log-

normal random matter fields consistent with a given input cosmology (GLASS),
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and incorporate the modelling of systematics such as intrinsic alignments, bary-

onic feedback, shear biases, variable depth, etc. These simulations are efficient

enough to freely compute as many evaluations as needed to cover a large parame-

ter space within computational runtimes comparable to running standard Markov-

Chain Monte Carlo (MCMC) methods. This then allows me to use these simulations

to conduct the first full simulation-based inference analysis of large-scale structure

observables at the same level of complexity as current state-of-the-art cosmic shear

analyses.

When propagating the uncertainties from the data to the posteriors in a non-

Gaussian manner using SBI, I find that the likelihood of cosmic shear two-point

statistics appears to have non-negligible deviations from Gaussianity which are not

typically considered in the standard cosmic shear analyses. The observed deviations

from standard Gaussian likelihood likelihood analyses are driven by a cosmology-

dependence in the uncertainties. I find that the reduction in the cosmological con-

straints is consistent with cosmic variance increasing with S8. At the same time, I

expect at least part of the non-Gaussian contributions to the uncertainty in the cos-

mic shear being caused by the full uncertainty propagation of systematic effects,

such as the intrinsic alignments, shear biases, the survey footprint or variable depth,

whose contributions to the noise may or may not be Gaussian. This cosmology-

dependence in the uncertainty appears to increase the relative uncertainties on S8

from 7% to 9% when compared to previous KiDS-1000 cosmic shear analyses.

Consequently, if these constraints persist when applied to the real KiDS-1000 data,

the σ8 “tension” observed between late-Universe large-scale structure probes, such

as KiDS-1000 cosmic shear, and early-Universe probes, such as Planck 2018 CMB

measurements, would decrease from 2.8σ to approximately 2.2σ . This implies that

the constraining power of current cosmic shear surveys may not be enough to con-

fidently determine the consistency/inconsistency between early- and late-Universe

observations, even when the assumption of a Gaussian likelihood is dropped. To

help resolve or confirm this “tension”, the methods outlined in this thesis can be

used in future work to facilitate the scientific exploitation of the upcoming data
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from stage-IV galaxy surveys and other cosmological probes.

Besides providing a full non-Gaussian Bayesian uncertainty propagation, the

SBI analysis in this thesis also highlights many other advantages of the method

which may help address many of the challenges facing cosmology and astrophysics

in the future. The next generation of galaxy surveys, such as Euclid, Rubin and

Roman, will drastically improve the signal-to-noise ratio for cosmic shear, galaxy

clustering and galaxy-galaxy lensing. Consequently, many systematic effects (such

as the magnification bias, variable depth, shear biases, etc.) will no longer be ob-

scured by random uncertainties. Modelling their contribution to the observed shear

signal as well as its uncertainty will become a necessity. Since current analytical

models of such effects can be inaccurate or intractable, SBI offers the opportunity

to incorporate numerical models of any systematic effect into inference pipelines.

The same applies for non-standard summary statistics (e.g. higher-order correla-

tion functions, fields, etc.) whose likelihood functions may be non-Gaussian and/or

analytically intractable, even when disregarding systematic effects. Additionally,

the uncertainty propagation facilitated by SBI is not only conducive to parameter

inference, but it also allows to perform rigorous Bayesian model testing to identify

physical models which are preferred by observations. Therefore, SBI has the poten-

tial to become a key method in order to learn as much as possible about dark matter,

dark energy, gravity and astrophysics from the plethora of galaxy survey data that

is going to become available over the coming years.

Finally, I describe a separate suite of KIDS-SBI simulations which is designed

to test the signal and uncertainty models for the upcoming KiDS-Legacy cosmic

shear analysis. To formalise this testing, I propose a new statistical measure, kmin,

which quantifies the relative distance between two matrices along the manifold of

all real, symmetric positive-definite matrices of the same dimensions. I conclude

that the signal modelling is largely unaffected by the consideration of a realistic

survey footprint or by the modelling of variable depth, even when considering the

additional sensitivity which KiDS-Legacy is going to have thanks to a potential

sixth tomographic bin. Moreover, I find that the analytical uncertainty model used
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within the KiDS-1000 analysis is consistent with the numerical modelling based on

the KIDS-SBI forward simulations, while the analytical model is also sufficiently

accurate for KiDS-Legacy despite not including variable depth in its modelling.

During this analysis, I discover that, despite variable depth adding additional

angular fluctuations in galaxy density and shape to galaxy observations, when ac-

curately forward-modelling the effect for KiDS-Legacy, the overall uncertainty of

the 2PCF cosmic shear measurement decreases when compared to a model which

assumes isotropic depth. This unexpected result is driven by the survey strategy

of KiDS. It causes anisotropies in the observational depth that are distributed with

positive skewness, such that the true shape noise across the majority of the sky is

below the measured mean value. In the case of KiDS, modelling the variable depth

in the uncertainty model reduces the estimated shape noise by up to 10%.

In future galaxy surveys, it will become even more important to consider vari-

able depth. It is predicted to be a sub-percent level systematic in the cosmic shear,

galaxy clustering and galaxy-galaxy lensing signal, so it may become detectable

in the signal of stage-IV surveys. Simultaneously, as the statistical power of these

measurements improves, the importance of variable depth in the noise model will

become further exacerbated. In Euclid, for example, angular variable depth will

not necessarily be as strong of an effect as in ground-based surveys, because of the

absence of atmospheric seeing. Nonetheless, variable depth may still significantly

contaminate measurements in Euclid due to its sensitivity to zodiacal background

light, galactic extinction, camera degradation over time, overlaps between point-

ings, etc. I also show in this thesis that the effects of variable depth on the redshift

selection of galaxy is an important driver of bias and uncertainty in the cosmic shear

measurement. All upcoming photometric galaxy surveys, including the space-based

Euclid survey, depend on some degree of redshift calibration from ground-based ob-

servations where variations in atmospheric seeing can be substantial. Hence, future

work should also aim to assess the impact of variable depth on photometric redshifts

from stage-IV galaxy surveys.

The work showcased in this thesis underlines the importance of accurate and
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true-to-observations modelling of observables in cosmology. With stage-IV galaxy

surveys already beginning to take observations with unprecedented precision, scale

and depth, it will become necessary to drastically increase the accuracy of models

in order to take full advantage of the large breadth of data that will come to be

available. To address this, the work outlined here could be expanded to include a

wider scope of large-scale structure probes, while also adding additional realism.



Appendix A

Magnification Bias: Flux-Limited

Case

As discussed in Section 2.2.2, we conduct a sanity check of our method by com-

paring the effective ακ to αobs for each redshift bin given a simulated magnitude-

limited (i < 20.2) galaxy population spanning the whole sky. This sample is also

based on MICE2 simulations. We estimate ακ from the known matter convergence

κ and the relative difference between the lensed and unlensed cumulative galaxy

number counts finding that α
zlow
κ = 0.97±0.13 in the zlow bin (0.2 < z ≤ 0.5) and

that α
zhigh
κ = 3.15±0.10 in the zhigh bin (0.5 < z ≤ 0.75).

The ακ values are compared to αobs in Figure A.1. We find that in zlow,

αobs optimally overlaps with the ακ estimate from the convergence when taking

the weighted mean of αobs(m) over a magnitude range of ∆i = 0.67 below the ef-

fective magnitude limit; giving α
zlow
obs = 0.96± 0.06. This agrees well with the ακ

of galaxies in zlow (αzlow
κ = 0.97± 0.13). The agreement is similarly good in the

zhigh bin where the optimal αobs is computed over a ∆i = 0.48 and found to be

α
zhigh
obs = 3.12± 0.20. The excellent agreement between ακ and when evaluating

near the faint end of the sample (∆i < 0.7) reinforces that Equation 2.5 and Equa-

tion 2.6 indeed describe the same α; at least for the flux-limited. Such a good

agreement is not really surprising, since the underlying assumptions leading to

Equation 2.5 (|κ| ≪ 1; |γ| ≪ 1) are ingrained in the way the MICE2 simulations

determine the magnified magnitude and position of galaxy (Fosalba et al., 2015a).

Nonetheless, it still provides a check which allows us to understand how the method
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Figure A.1: The slope of the luminosity function, α , as a function of the i-band magnitude,
i, for the magnitude-limited case. Two redshift bins are considered: 0.2 <
z ≤ 0.5 (top) and 0.5 < z ≤ 0.75 (bottom). The vertical black line marks the
magnitude limit at i= 20.2 and the dashed red vertical lines mark the upper and
lower bounds of the highlighted magnitude range which was used to determine
α

MICE2
obs . The dashed red horizontal line marks the α

MICE2
obs estimate and the

blue dot-dashed horizontal line marks the effective α
MICE2
κ determined from

the weak lensing convergence with Equation 2.5 and used to calibrate α
MICE2
obs .
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Figure A.2: αobs estimates from the MICE2 simulations for the magnitude-limited case
(i < 20.2) over i-band magnitude ranges below the turn-off magnitude (∆i)
considered to calculate the weighted average. Two redshift bins are considered:
0.2 < z ≤ 0.5 (top) and 0.5 < z ≤ 0.75 (bottom). The red cross marks the αobs
estimate which overlaps the most with the ακ estimate from the weak lensing
convergence (black line).

estimates α in the absence of a complex selection function .

In addition, when looking at Figure A.2, one finds that for zlow the αobs es-

timates are accurate over a large domain of magnitude ranges (being less than 1σ

apart when considering ∆i anywhere between 0 and ∼ 2). This confirms that a

power law is a good approximation for the luminosity function over a large magni-

tude range near the faint end of the distribution which implies that, in a magnitude-

limited survey, αobs estimates are robust and accurate even after substantial changes

in the magnitude range considered. We find similarly good agreement between the

ακ and αobs in the zhigh bin where α
zhigh
obs = 3.12± 0.2, while Figure A.2 shows



285

that this estimate is robust at high redshifts.

Despite the consistency between ακ and αobs and the robustness of the esti-

mate to small changes in the calibration magnitude range ∆i, it is surprising to see

such a drastic increase in αobs between zlow and zhigh. This seems to be a conse-

quence of the magnitude limit at i = 20.2 being low enough to exclude a substantial

fraction of faint galaxies at high redshifts, such that the power law in flux assumed

in Equation 2.2 no longer applies. If we consider the luminosity function of the

galaxies as a Schechter function (Schechter, 1976), such a selection of bright galax-

ies would lead to a dominant exponential term in the Schechter function which leads

to overestimates of α . In general, this is not of much concern, since most magnitude

limited surveys operate within a regime where the power law approximation holds.



Appendix B

KiDS-SBI: Theoretical Signal

Modelling

To compute the derivatives needed for score compression, and to provide consis-

tency checks, we also theoretically model the expected signal for a given mock. For

this, we calculate the matter power spectrum using CAMB and proceed to make a

Limber projection to obtain the following cosmic shear angular power spectrum

C(pq)
εε (ℓ) =

(ℓ+2)!
4(ℓ−2)!

∫
∞

0

dχ

f 2
k (χ)

W (p)
ε (χ)W (q)

ε (χ)Pδ

(
ℓ+1/2
fk(χ)

,χ

)
, (B.1)

where WG is the weak lensing kernel, given by

W (p)
ε (χ) =

3H2
0 Ωm

2
fK(χ)

a(χ)

∫
χhor

χ

dχ
′n(p)

S (χ ′)
fK(χ ′−χ)

fK(χ ′)
, (B.2)

where n(p)
S is the redshift distribution of the objects in jth tomographic bin as shown

in Figure 3.2.

Knowing the full-sky angular power spectra, C(pq)
εε,ν(ℓ

′;ΘΘΘ), we can define the

pseudo-Cl, C̃(pq)
εε,µ(ℓ;ΘΘΘ), as follows (Peebles, 1973; Brown et al., 2005; Hikage et al.,

2011),

C̃(pq)
εε,µ(ℓ;ΘΘΘ) =

ℓ′max

∑
ℓ′=0

ℓ′′max

∑
ℓ′′=0

3

∑
ν=1

3

∑
ν ′=1

Mµν ′,ℓℓ′′M
′(pq)
ν ′ν ,ℓ′′ℓ′C

(pq)
εε,ν(ℓ

′;ΘΘΘ), (B.3)

where µ,ν ,ν ′ ∈ {1,2,3} such that 1 stands for the EE component, 2 for the BB
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Figure B.1: Bitmap of the mixing matrices to model the theoretical signal for the pseudo-
Cls as seen by KiDS-1000. On the right panel is the mixing matrix derived
from the KiDS-1000 mask, Mµν ′,ℓℓ′′ , (the input mask is at a resolution of Nside =
1024). On the left panel is the mixing matrix caused by the selection due to
randomly sampling galaxies for the auto-correlation of the fifth tomographic
bin, M′(55)

ν ′ν ,ℓ′′ℓ′ . Both matrices are decomposed into block matrices separating the
EE →EE, EE →BB and EB→EB mixing. Each block matrix has dimensions
of 8193×8193 with ℓ ∈ {ℓ ∈ Z0+|ℓ≤ 8192}.

component and 3 for the EB component, Mℓℓ′′ is the mixing matrix of the survey

mask, W(θ), which does not vary between tomographic bins, and M′(pq)
ℓ′′ℓ′ is the

mixing matrix of the effective mask imposed by the average random variations in

the observed galaxies in a given tomographic bin over many realisations.

The first mixing matrix from the left in (B.3), Mℓℓ′′ , is the standard block

mixing matrix to account for the partial sky coverage in a survey (Hivon et al.,

2002; Bennett et al., 2003; Brown et al., 2005). The second mixing matrix, M′(pq)
ℓ′′ℓ′ ,

accounts for an additional effect: the mode mixing induced by a mask of uncor-

related noise originating from the random sampling described in Sect. 3.2.6. In

other words, when randomly Poisson sampling galaxies within a discrete pixel k

given a probability of P(m)(N), there will be a non-zero probability of observing

zero counts in that given pixel. In essence, all the pixels which are sampled to have

zero galaxy counts impose an additional masking on our sample. This can become

significant at the resolutions and galaxy densities which we probe in this work. For
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example, for an HEALPIX Nside = 2048 and a galaxy density of n = 1arcmin−2

for a given tomographic bin k (similar to KiDS-1000), P(m)(N = 0) ≈ 0.07. This

means that nearly a tenth of all pixels could be “masked” in a given realisation

of simulations at a higher resolution. To allow for these cases, we decide to also

model the mode mixing induced by the sampling variance. However, for the set-

tings discussed in this work for the main pipeline of forwards simulations where

Nside = 1024, this effect is not so relevant. Even for the sparsest source bin, S1,

with an n(1)gal = 0.62arcmin−2, P(m)(N = 0) ≈ 0.0005, so only a negligible fraction

of pixels are masked due to random sample variance.

To provide a general overview, the distinguishing factor between the two mix-

ing matrices is how we define the mask W(θ) which characterises them. For

Mµν ,ℓℓ′′ , W(θ) is defined as the mask of the survey footprint, Ωsurvey, such that

W(θ) =

1, θ ∈ Ωsurvey

0, θ /∈ Ωsurvey

. (B.4)

For M
′(pq)
µν ,ℓℓ′′ , rather than defining it using an explicit spatial mask from the

pixels masked by each random realisation, W
′(p)(θ), we can define the expectation

value of the mixing matrix due to the random sampling of galaxies directly from the

angular power spectrum of W
′(p)(θ) as

W (pq)′(ℓ)

2ℓ+1
=

1
2ℓ+1

ℓ

∑
m=−ℓ

w(p)
ℓm w(q)∗

ℓm =

4πσ (pq)

Npix −1
+4π

[
µ
(pq)− σ (pq)

Npix −1

]
δℓ0, (B.5)

where µ(pq) = P(p)(N > 0)P(q)(N > 0), i.e. the product of the mean probabilities

of success within each tomographic bin (the probability that a given pixel will be

populated by at least one galaxy), while 2σ (pq)2 = P(p)2(N > 0)(1 − P(p)(N >

0))2 +P(q)2(N > 0)(1−P(q)(N > 0))2, i.e. the associated standard deviation of the
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mean, and Npix is the number of pixels.

As described in Sect. 3.2.6, the galaxies are Poisson sampled according to the

probability of success is given in (3.22). As we are interested in the the mean

over many iterations, we can assume that the matter overdensities are small, 1+

b(p)δ (p) ≈ 1, so we can rewrite the probability as

P(p)(N > 0) = 1−P(p)(N = 0) = 1− e−⟨N(p)
m ⟩(ΘΘΘ) ≈ 1− e−n(p)

gal Apix, (B.6)

where n(p)
gal is the mean galaxy density per tomographic bin p and Apix is the mean

pixel size for a given HEALPIX resolution. From this, we can calculate both mix-

ing matrices as shown in Fig. B.1. In practice, we can see that from Fig. B.1 that the

mode mixing M
′(pq)
µν ,ℓ′′ℓ′ is negligible when compared to Mµν ,ℓℓ′′ at an Nside = 1024.

However, we still include the term in the signal modelling to allow the flexibility to

choose higher resolutions within KIDS-SBI.

With (B.4) and (B.5) defining the selections which define Mµν ,ℓℓ′′ and M
′(pq)
µν ,ℓ′′ℓ′ ,

respectively, we can compute the matrices as follows (Brown et al., 2005; Hikage

et al., 2011):

Mµν ,ℓℓ′′ =


W++

ℓℓ′′ (W−+
ℓℓ′′ +W+−

ℓℓ′′ ) W−−
ℓℓ′′

−W+−
ℓℓ′′ (W++

ℓℓ′′ −W−−
ℓℓ′′ ) W−+

ℓℓ′′

W−−
ℓℓ′′ −(W−+

ℓℓ′′ +W+−
ℓℓ′′ ) W++

ℓℓ′′

 , (B.7)

M
′(pq)
µν ,ℓ′′ℓ′ =


W

′++
ℓ′′ℓ′ (W

′−+
ℓ′′ℓ′ +W

′+−
ℓ′′ℓ′ ) W

′−−
ℓ′′ℓ′

−W
′+−
ℓ′′ℓ′ (W

′++
ℓ′′ℓ′ −W

′−−
ℓ′′ℓ′ ) W

′−+
ℓ′′ℓ′

W
′−−
ℓ′′ℓ′ −(W

′−+
ℓ′′ℓ′ +W

′+−
ℓ′′ℓ′ ) W

′++
ℓ′′ℓ′


(pq)

, (B.8)

where each of the Wigner symbols is given by

W±±
ℓℓ′ =

1
2ℓ+1

ℓ

∑
m=−ℓ

ℓ′

∑
m′=−ℓ′

W±
ℓℓ′mm′(W±

ℓ′ℓm′m)
∗. (B.9)
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Since the shear field is a spin 2 field

W+
ℓℓ′mm′ =

1
2
(2W mm′

ℓℓ′ +−2 W mm′
ℓℓ′ ), (B.10)

W−
ℓℓ′mm′ =

i
2
(2W mm′

ℓℓ′ −−2 W mm′
ℓℓ′ ), (B.11)

where

sW+
ℓℓ′mm′ =

∫
dθ sYℓ′m′(θ)W(θ) sY ∗

ℓm(θ), (B.12)

The latter is difficult to compute, so it is more convenient to compute in phase

space such that

ℓ

∑
m=−ℓ

ℓ′

∑
m′=−ℓ′

sW mm′
ℓℓ′ (s′W

m′m
ℓ′ℓ )∗

=
(2ℓ+1)(2ℓ′+1)

4π

ℓ′′max

∑
ℓ′′=0

Wℓ′′

 ℓ ℓ′ ℓ′′

−s s 0

 ℓ ℓ′ ℓ′′

−s′ s′ 0

 , (B.13)

where s ∈ {−2,2} and

Wℓ =
ℓ

∑
m=−ℓ

wℓmw∗
ℓm, (B.14)

where wℓm are the coefficients of the spherical harmonic transform of the mask,

W(θ), such that

wℓm =
∫

dθ W(θ)Y ∗
ℓm(θ). (B.15)
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Böhm, V., Hilbert, S., Greiner, M., & Enßlin, T. A. 2017, Bayesian weak lens-

ing tomography: Reconstructing the 3D large-scale distribution of matter with a

lognormal prior, Phys. Rev. D, 96, 123510

Brainerd, T. G., Blandford, R. D., & Smail, I. 1996, Weak Gravitational Lensing by

Galaxies, ApJ, 466, 623

Brandenberger, R. H. 1985, Quantum field theory methods and inflationary universe

models, Reviews of Modern Physics, 57, 1



BIBLIOGRAPHY 296

Bridle, S., & King, L. 2007, Dark energy constraints from cosmic shear power spec-

tra: impact of intrinsic alignments on photometric redshift requirements, New

Journal of Physics, 9, 444

Broadhurst, T., & Lehar, J. 1995, A Gravitational Lens Solution for the IRAS

Galaxy FSC 10214+4724, ApJ, 450, L41

Brown, M. L., Castro, P. G., & Taylor, A. N. 2005, Cosmic microwave background

temperature and polarization pseudo-Cl estimators and covariances, MNRAS,

360, 1262

Brown, M. L., Taylor, A. N., Hambly, N. C., & Dye, S. 2002, Measurement of

intrinsic alignments in galaxy ellipticities, MNRAS, 333, 501

Castro, P. G., Heavens, A. F., & Kitching, T. D. 2005, Weak lensing analysis in

three dimensions, Phys. Rev. D, 72, 023516

Catelan, P., Kamionkowski, M., & Blandford, R. D. 2001, Intrinsic and extrinsic

galaxy alignment, MNRAS, 320, L7

Chen, A., Harness, A., & Melchior, P. 2022, Lightweight starshade position sens-

ing with convolutional neural networks and simulation-based inference, arXiv

e-prints, arXiv:2204.03853

Chiu, I., Dietrich, J. P., Mohr, J., et al. 2016, Detection of enhancement in number

densities of background galaxies due to magnification by massive galaxy clusters,

MNRAS, 457, 3050

Clampitt, J., Sánchez, C., Kwan, J., et al. 2017, Galaxy-galaxy lensing in the Dark

Energy Survey Science Verification data, MNRAS, 465, 4204

Clemence, G. M. 1947, The Relativity Effect in Planetary Motions, Reviews of

Modern Physics, 19, 361

Clerkin, L., Kirk, D., Manera, M., et al. 2017, Testing the lognormality of the

galaxy and weak lensing convergence distributions from Dark Energy Survey

maps, MNRAS, 466, 1444



BIBLIOGRAPHY 297
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Crocce, M., Castander, F. J., Gaztañaga, E., Fosalba, P., & Carretero, J. 2015, The

MICE Grand Challenge lightcone simulation - II. Halo and galaxy catalogues,

MNRAS, 453, 1513

Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B., et al. 2016, The Dark

Energy Survey: more than dark energy - an overview, MNRAS, 460, 1270

Das, S., & Ostriker, J. P. 2006, Testing a New Analytic Model for Gravitational

Lensing Probabilities, ApJ, 645, 1

Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, The evolution of

large-scale structure in a universe dominated by cold dark matter, ApJ, 292, 371

Dawson, K. S., Schlegel, D. J., Ahn, C. P., et al. 2013, The Baryon Oscillation

Spectroscopic Survey of SDSS-III, AJ, 145, 10

de Salas, P. F., & Pastor, S. 2016, Relic neutrino decoupling with flavour oscillations

revisited, J. Cosm.&Astrop. Phys., 2016, 051

Deshpande, A. C., Kitching, T. D., Cardone, V. F., et al. 2020, Euclid: The reduced

shear approximation and magnification bias for Stage IV cosmic shear experi-

ments, A&A, 636, A95



BIBLIOGRAPHY 298

DESI Collaboration, Aghamousa, A., Aguilar, J., et al. 2016, The DESI Experiment

Part I: Science,Targeting, and Survey Design, arXiv e-prints, arXiv:1611.00036

Dolag, K., Borgani, S., Schindler, S., Diaferio, A., & Bykov, A. M. 2008, Simula-

tion Techniques for Cosmological Simulations, Space Sci. Rev., 134, 229

Duffy, A. R., Schaye, J., Kay, S. T., et al. 2010, Impact of baryon physics on dark

matter structures: a detailed simulation study of halo density profiles, MNRAS,

405, 2161
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