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Abstract

Measuring the density of fluctuations in the large-scale structure of the Universe has
become a powerful tool in constraining and testing cosmological models. Current
and upcoming galaxy surveys are pushing the precision limits of current physi-
cal models, while measuring unprecedented amounts of data. This thesis presents
statistical simulations of large-scale structure and inference techniques for estimat-
ing cosmological parameters and calibrating systematic effects from galaxy sur-
vey data. First, I present a novel method to calibrate magnification bias observed
within galaxy clustering and weak gravitational lensing measurements regardless
of the selection applied to the galaxy data. This method addresses the need for
estimating this systematic within the Kilo-Degree Survey’s (KiDS) cosmological
analysis. Secondly, I show a suite of statistical forward-simulations of large-scale
structure which is designed to model galaxy survey observations, while including
relevant physical and observational biases. These simulations create realistic cat-
alogues of galaxy observations based on underlying matter density fields consis-
tent with a given cosmological model. Next, I describe how these simulations are
used to conduct the first Bayesian simulation-based inference (SBI) of cosmologi-
cal parameters from weak lensing data from KiDS at a similar precision as standard
analyses. This SBI analysis allows dropping the common assumption of a Gaus-
sian likelihood, fully propagating uncertainty from data to parameter posteriors at
a comparable computational cost as standard weak gravitational lensing analysis.
Thus, this may facilitate the efficient extraction of information from surveys such as
Euclid or the Vera Rubin Observatory. Lastly, I use an altered form of the forward-
simulations to test signal and uncertainty modelling conducted for KiDS’s analysis.
This shows the sufficiency of analytical modelling when considering systematics

such as variations in observational depth. In summary, in this thesis, I present novel
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techniques to estimate systematic uncertainties in inferring cosmological parame-
ters from galaxy surveys and I show how fast realistic forward-simulations may be

used for SBI and model testing in current and future surveys.



Impact Statement

This thesis presents novel methods and tools to improve the inference of cosmo-
logical parameters from weak gravitational lensing and galaxy clustering measure-
ments. With that, it makes concrete predictions and suggestions for current and
upcoming galaxy surveys such as the Kilo-Degree Survey, the Dark Energy Survey,
the Hyper-Suprime Cam survey, Euclid, and the Vera Rubin Observatory. Among
these methods is the first application of simulation-based inference to a cosmic
shear analysis equivalent to a traditional analysis. At the same time, the research
presented in this thesis directly contributes to the analysis choices for the main

cosmic shear and galaxy clustering analyses of the Kilo-Degree Survey.

With this, this work may contribute to the resolution of the greatest questions

in cosmology: understanding of nature of dark matter, dark matter and gravity.

Additionally, the investigations shown in this work have required the develop-
ment of multiple software packages which have subsequently been made publicly

available, and which are already in use by other researchers.
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depth (i.e. the mean value of the root-mean-square of the back-
ground noise, Gyg) Which is shown with its respective colour. The
lower panels show the associated residual change in the redshift
distributions with respect to P,1(z) per unit redshift. It is apparent
that variable depth mostly affects the source distributions at high

redshifts, while the effect tends to decrease the mean of the redshift

distribution with increasing Grms. - « - « « « « v e e e e
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Signal of a single run of the KIDS-SBI simulations for all combi-

nations for five tomographic bins (S1 to S5). The blue points show
¢t

the pseudo-Cl measurements, Cyp

(@), for a realisation single re-
alisation of the KiDS-1000+ model. The orange triangles show the
associated BB modes in the cosmic shear signal. Throughout we
assume Q. = 0.05, Q, = 0.28, oz = 0.84, Sg = 0.76, Hy = 67 km
s7! Mpcfl, Apary = 3.1 and Ajp = 0.56. The uncertainties on the

measurements are derived from the covariance matrix described in

Section 3.3.2. The solid black line shows the pseudo-Cls, ng, as

derived from theory (see Appendix B for details on this). . . . . . .

Bar chart comparing the run-time of a single evaluation of KiDS-
SBI (above) versus a single evaluation of a simulation based on
Joachimi et al. 2021 (below), both on a single core ( Ngheis = 19,
Niomo = 5 and N;;qe = 1024). Both suites of simulations use CAMB
(Lewis et al., 2000; Lewis & Challinor, 2002; Howlett et al., 2012)
to compute the three-dimensional matter power spectrum. For
the reference simulations, we use the non-Limber projection built
into CAMB with limber_phi_Imin = 1200 rather than LEVIN with
CmaxnL = 1200. We run FLASK (Xavier et al., 2016) rather than
GLASS (Tessore et al., 2023) to compute the underlying matter
and convergence fields of each of the 19 shells. Subsequently, we
sample galaxies using SALMO in both cases, and then calculate
the spatial two-point correlation functions, &, (), rather than cal-

culating the angular power spectra, C(¢). To calculate &1 () in the

reference simulations, we use TREECORR (Jarvis et al., 2004). . . .

Flowchart describing the structure of the simulation-based infer-
ence pipeline. The dark blue rounded boxes represent the inputs and
outputs which are given to the simulation-based inference pipeline.

The grey rectangular boxes show steps in the inference pipeline.
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3.16
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Contours showing the Fisher forecasts obtained from 1,000 reali-
sations of the KiDS-1000+ (in blue) model. The input fiducial cos-
mology is set to be S§ =0.761, @, =0.118, @, = 0.022, hg = 0.657,

ng=1.0,Aja = 0.396, Apary = 3.113. . ... ...

Posterior contours, in blue, of the seven cosmological and astro-
physical parameters which are varied given the KiDS-1000+ model
within KIDS-SBI over the prior space shown in Table 3.2. The
black solid lines indicate the true cosmology of the input mock data
vector generated from the KiDS-1000+ model while adding noise.
All the aforementioned values are shown in Table 3.3. These poste-
riors are obtained from training neural density estimators in DELFI
(Alsing et al., 2019) on 14,000 realisations of the forward simu-
lations assuming the KiDS-1000+ model, in line with the choices
made in L22. The posterior is obtained from the combined poste-
riors of six independent conditional Masked Autoregressive Flows
(MADs) each is made up of three to eight Masked Autoencoder for
Density Estimations (MADESs) each with two hidden layers of 50

NCUIONS. . . . . . . o v v vt vt v v e e e e e e e e e e e e e e

Posterior marginals, in blue, of the three cosmological parame-
ters of interest which varied given the KiDS-1000+ model within
KIDS-SBI over the prior space shown in Table 3.2. The black
solid lines indicate the true cosmology of the input mock data
vector generated from the KiDS-1000+ model while adding noise.
All the aforementioned values are shown in Table 3.3. Note that
the matter density parameter, Qp,, is a derived parameter given by

Qm = (© + @) /h3, and the posterior shown here is derived from

the posteriors shown in Figure 3.16. . . . . . . ... ... ... ..
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Plot of the expected coverage probability versus the credibility level
as defined in the Tests of Accuracy with Random Points (TARP)
described in Lemos et al. (2023a) for the posterior shown in Fig-
ure 3.16 assuming the KiDS-1000+ model. The dashed line is a ref-
erence line for a perfectly linear relation. The credibility level gives
the fraction of the total probability density of the learned posterior
being considered, while the expected coverage probability measures
the fraction of posterior samples which have a posterior probability
smaller than the best estimate at a given credibility level. We note
the relation in this case is highly linear which is a necessary and

sufficient measure that the posterior estimate given in Figure 3.16 is

accurate. Figure from Linetal. (inprep.). . . . . .. ... .. ...

Posterior contours of the main constrained cosmological parame-
ters from the KIDS-SBI analysis of a mock cosmic shear data vec-
tor assuming the KiDS-1000+ model (in orange) compared against
posterior contours from other analysis. The purple contour shows
the posterior from an analysis of the cosmic shear signal measured
with pseudo-Cls from KiDS-1000 data assuming a Gaussian like-
lihood (Loureiro et al. 2021; where the uncertainty model includes
variable depth as is the case in the KiDS-1000+ model), while the
blue contour shows the posterior from the cosmic microwave back-
ground constraints from the TT+TE+EE modes (Planck Collabora-
tion et al., 2020). The solid black lines show the true cosmology
assumed in the mock data vectors used for the SBI contours (see
Table 3.3). The true cosmology is based on the MAP from Asgari
et al. (2021) which is close to the MAP from Loureiro et al. (2021),
but noticeably different from the preferred cosmology from Planck
Collaboration et al. (2020). Note that the Planck TT+TE+EE con-

tours do not have any marginals in Aja as the CMB is not sensitive

tothe [Asof galaxies. . . . . . .. .. ... ... ... .. ...,
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3.20 Plots showing the effect of mode mixing due to the KiDS-1000 sur-

3.21

vey footprint on the cosmic shear signal in the 5-5 tomographic
bin combination. The left panel shows the expected angular power
spectra from theory in blue, CSES)(K), truncated such that modes
with ¢ > 50 are set to zero, while also showing the corresponding

pseudo-Cl, C (53)

low’ (£), in orange which is derived from the mixing

matrix shown in Figure B.1. The black dashed line marks lower
limit in the domain of the pseudo-Cls considered in this analysis,
i.e. £ =76. The right panel shows the ratio between the aforemen-
tioned pseudo-Cl derived from truncated theoretical angular power
spectra over the measured pseudo-Cl for ¢ € [76,1500] from a sin-

gle evaluation of the KiDS-1000+ model with KIDS-SBI assuming

the same cosmology. . . . . . .. ... ... L.

Likelihood marginals in the compressed data space for 5 different
assumed sets of cosmological parameters given the KiDS-1000+
model within KIDS-SBI over the prior space shown in Table 3.2.
The compressed data values are labelled according to the cosmo-
logical parameter with which they are most correlated (see Sec-
tions 1.4.2 and 3.3.2 for details). For the orange contours, the input
data vector is set to Sg = 0.694, Sg = 0.724 for the pink contours,
Sg = 0.754 for the purple contours, Sg = 0.784 for the purple con-
tours, and Sg = 0.814 for the blue contours. All other cosmologi-
cal parameters are taken to be the same as in Table 3.3. Table 3.4

shows the Sg values and the associated standard deviations in the

likelihood marginals. . . . . . .. .. ... ... ... .. ...
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3.22 Plot of the standard deviation of the analytical likelihood distribu-

3.23

tion of ), (which is given by the goodness of fit of the cosmic shear
2PCEF signal scaled by a factor of a) as a function of the factor a.
Each of the panels shows the effect on the shear signal of a dif-
ferent combination of the five KiDS-1000 tomographic bins (S1 to
S5). The blue dots represent the oy, values at £ = 70 which is just
below the scale cuts applied in the KiDS-1000+ model. The or-
ange crosses are evaluated at £ = 100, while the green plus signs
assume ¢ = 500, where the uncertainty is dominated by the shape
noise. The panel in the upper right corner shows how the 10 inter-
vals of the likelihood marginals from KiDS-SBI vary with respect
to the change in Sg relative to Si¢ = 0.754 as shown in Figure 3.21

and Table 3.4. The grey dashed line in each panel shows a direct

proportionality for reference. . . . . . . .. ... ...

Posterior contours of the seven cosmological and astrophysical pa-
rameters which are varied given the KiDS-1000+ model within
KIDS-SBI over the prior space shown in Table 3.2. Both contours
are obtained from training neural density estimators in DELFI (Als-
ing et al., 2019) on 14,000 realisations of the forward simulations
assuming the KiDS-1000+ model, in line with the choices made in
L22. The blue posterior is calculated from a single Mixture Den-
sity Network which is made up of a single multivariate Gaussian.
The orange countour is the combined posteriors of six independent
conditional Masked Autoregressive Flows (MADs) each is made
up of three to eight Masked Autoencoder for Density Estimations
(MADEs) each with two hidden layers of 50 neurons. The black
solid lines indicate the true cosmology of the input mock data vec-

tor generated from the KiDS-1000+ model while adding noise. All

the aforementioned values are shown in Table 3.3. . . . . . . . . ..
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4.2

4.3
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Plot of the redshift distributions of the six KiDS-Legacy-like to-
mographic bins (S1 to S6). The shaded areas show to limits of
each tomographic bin, while the solid lines show the n(z) of the
source galaxies in each tomographic bin as a function of both red-
shift, z, and comoving distance, x (the latter is derived assuming
a Planck 2018 cosmology; Planck Collaboration et al. 2020). The
black dashed lines show the limits of the spherical matter shells in

our forward simulations. . . . . . . ... ...

Spatial map of the expected KiDS DRS, i.e. KiDS-Legacy, and the
KiDS DR4/KiDS-1000 footprints. The green areas show the point-
ings which are included in KiDS DR4, while both the green and
the yellow pointings are included in KiDS DRS. The purple point-
ings show the pointings which were excluded, i.e. ‘“de-scoped”,
from the final KiDS data release. The top and bottom panels show
Cartesian projections of KiDS-North and KiDS-South fields, re-
spectively. Figure courtesy of Angus H. Wright and the KiDS team.

Flowchart describing the steps in a single forward simulation of
cosmic shear observables from cosmological parameters used for
the KiDS-Legacy signal and uncertainty modelling. The dark blue
rounded boxes represent the inputs and outputs which are given to
the simulation-based inference pipeline. The green slanted boxes
represent relevant quantities which are calculated during the simu-
lation. The grey rectangular boxes show steps in the calculations,
while the blue slanted boxes show any (systematic) effects which

areincluded. . . . . . . ...
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4.4 Plots showing the underlying correlations of systematic effect

4.5

List of Figures

parameters with the magnitude measurements in the r-band,
MAG _GAAP_r, the photometric redshifts, Z_B, and each other.
These variables are the magnitude limit in the r-band, MAG _LIM _r,
and the root-mean square of the background noise in the observa-
tions, “Level” or orpys. The black dots show the values of galaxies
in KiDS DR4 (Kuijken et al., 2019). The solid red lines show the
running average, while the dashed lines show the 16 upper and

lower bounds of the running average. Figures courtesy of Angus H.

Wright and the KiDSteam. . . . . . . ... ... ... ... ...,

Plots showing the dependence of the per-component Gaussian
shape dispersion, o¢/+/2, (top panel) and the galaxy density, Ngal,
(bottom panel) on the root-mean square of the background noise,
Oms in the KiDS-Legacy-like mock catalogue. For both panels,
the data points represent the mean O or ng, of ten equi-populated
bins in Oyps. The solid line shows the linear fit to the aforemen-
tioned data points of their respective tomographic bin according to
Equations (3.30) and (3.31). The parameters of this fit for each to-
mographic bin are shown in Table 4.2. The dotted horizontal lines
show the mean values of O and ng, calculated from the galaxy
samples with variable depth per tomographic bin, while the dashed
horizontal lines show the values of o and ng, for the respective
galaxy samples without any spatial variations in the observational
depth. Both of these lines agree exceptionally well by construction,

but some negligible deviations may occur due to rounding errors. .
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In the upper panels, plot of the normalised redshift distributions,
P(z), for each tomographic bin (S1 to S6). The redshift distribution
from the entire KiDS-Legacy-like mock catalogue constructed from
the organised randoms (Johnston et al., 2021), Pya1(2), is shown in
black, while the other ten redshift distributions are derived from 10
equi-populated subsamples of the mock catalogue based on their
observational depth (i.e. the mean value of the root-mean-square
of the background noise, Gnys) which is shown with its respective
colour. The lower panels show the associated residual change in the
redshift distributions with respect to Pio1(z) per unit redshift. It is
apparent that variable depth mostly affects the source distributions
at high redshifts, while the effect tends to decrease the mean of the

redshift distribution with increasing Gy« - . . . . . oL oL L

Measurements of the mean two-point correlation functions, &, as
a function of angular separation, 0, between 5,000 realisations of
KiDS-Legacy-like mock catalogues with the same underlying cos-
mology. Each line represents different choices for modelling survey
characteristics such as the footprint and variable depth. The black
dot-dahsed lines show the measurement for Buceros, the red dashed
lines the measurement for Cygnus and the blue solid lines show

Egretta. . . . . . . ..

Bitmap of the KiDS-Legacy-like analytic covariance matrix. The
upper left panels show the &,-&. covariance for all tomographic
bin combinations, with each pixel showing the value for a single
log-spaced bin in angular separation, 8, between 6 = 0.1 arcmin
and 6 = 300 arcmin. The upper right and lower left panels show
the same, but for the covariance between &, and &_, while the lower

right panels show the covariance of §_ with itself. . . . . . ... ..
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Bitmap of the covariance matrix terms as computed from 5,000 nu-
merical realisations of KiDS-Legacy-like Buceros (idealised foot-
print and homogeneous galaxy selection). The upper left panels
show the &, -, covariance for all tomographic bin combinations,
with each pixel showing the value for a single log-spaced bin in an-
gular separation, 8, between 6 = (.1 arcmin and 8 = 300 arcmin.
The upper right and lower left panels show the same, but for the

covariance between &, and &_, while the lower right panels show

the covariance of & withitself. . . ... ... ... ........

Bitmap of the diagonal covariance matrix terms as computed from
5,000 numerical realisations of KiDS-Legacy-like Cygnus (realistic
footprint and homogeneous galaxy selection). The upper left panels
show the covariance between &, measurements from tomographic
bins S1 to S6, with each pixel showing the value for a single log-
spaced bin in angular separation, 0, between 8 = (0.1 arcmin and
0 = 300 arcmin. The upper right and lower left panels show the

same, but for the covariance between &, and &_, while the lower

right panels show the covariance of §_ with itself. . . . . . ... ..

Bitmap of the diagonal covariance matrix terms as computed from
5,000 numerical realisations of KiDS-Legacy-like Egretta (realistic
footprint, and inhomogenous and anisotropic galaxy selection). The
upper left panels show the covariance between &, measurements
from tomographic bins S1 to S6, with each pixel showing the value
for a single log-spaced bin in angular separation, 8, between 0 =
0.1 arcmin and 6 = 300 arcmin. The upper right and lower left
panels show the same, but for the covariance between &, and &_,

while the lower right panels show the covariance of &_ with itself.
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Difference between the mean shear two-point correlation functions,
éi(G), as measured from 5,000 realisations of Cygnus and from
5,000 realisations of Buceros with the same underlying cosmology
and seeds. The uncertainties shown are the propagated uncertainties
of the difference of the means. Each panel shows the difference in

signal for a given tomographic bin pair of the bins from S1 to S6. .

In blue, the difference between the mean shear two-point correlation
functions, §i(9), as measured from 5,000 realisations of Egretta
and from 5,000 realisations of Cygnus with the same underlying
cosmology and seeds. The uncertainties shown are the propagated
uncertainties of the difference of the means. The orange lines show
the expected difference in the measured signal due to the inclusion
of equivalent depth variability as given by the semi-analytical esti-
mates form the model presented in Heydenreich et al. (2020). Each
panel shows the difference in signal for a given tomographic bin

pair of the bins from S1toS6. . . . .. ... ... .. ... ...,

Plots of the relative Forstner-Moonen distance, Adgy, between two
sets of covariance matrices from Buceros and Cygnus as a function
of the fractional change in the reference matrix, k. The top panel
shows Adpy between the Cygnus and Buceros covariance matri-
ces when considering only the first five KiDS-1000 tomographic
bins, while the bottom panel shows the same when considering all
six KiDS-Legacy-like tomographic bins. The dashed vertical lines
show the values of kp;, for a given covariance matrix pair. The
data points show the values of Adpy(k) near kpy,;, at intervals in k
of 0.005. The solid lines show the Lorentzian fit given by Equa-
tion (4.19) of the data points, while the associated shaded region of

the same colour shows the FWHM of the Lorentzian around k;;,.
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4.15 Relative difference between the standard deviations calculated from
the diagonal elements of the analytic covariance of cosmic shear
two-point correlation functions, Cov[E(6),E4(0)], and the covari-
ance as calculated from 5,000 realisations different mocks (Buceros
in dashed lines, Cygnus in solid lines, and Egretta in dotted lines),
as a function of angular separation, 8, in arcmin. The orange lines
show the relative differences between Cov[£1(0),&(6)], while the
blue lines show the same for Cov[E_(6),E_(0)]. Each panel shows
the difference in signal for a given tomographic bin pair of the bins

fromS1toS6. . . . . . . ., 247

4.16 Bitmap of the difference in the correlation coefficients, Ap, between
the analytic covariance matrix (see Figure 4.8), and the covariance
matrix from Cygnus (realistic footprint, and homogeneous galaxy
selection; shown in Figure 4.10). The upper left panels show Ap for
&.- &, with each pixel showing the value for a single log-spaced
bin in angular separation, 6, between 6 = 0.1 arcmin and 6 = 300
arcmin. The upper right and lower left panels show the same, but
for the change in correlation between &, and &_, while the lower

right panels show the change in correlation of £ with itself. . . . . 248
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Bitmap showing the kp,j, measure from comparing the analytical
covariance matrix, Cov(&4, &4 ), and the Cov(&y, &) as calculated
from Cygnus as four separate blocks. The uncertainties given for
each ki, are a measure of the potential degeneracy of ki, as given
by I'/2 as shown in Equation (4.19), where I' — 0 implies that ki,
is unique and I" — oo implies that kpj, 1S not a unique minimum. The
left 4 x 4 bitmap shows kp,;; when only considering the covariance
terms which correlate the uncertainties from tomographic bins S1
to S5 (as in KiDS-1000). The right 4 x 4 bitmap shows ki, when
considering all covariance terms from tomographic bins S1 to S6
(as in KiDS-Legacy). Lighter panels imply that the given block of
the analytical covariance matrix is overall less noisy than Covcygnus.

darker green panels imply thereverse. . . . . . .. ... ... ...

Bitmap of the difference in the correlation coefficients, Ap, between
the analytic covariance matrix (see Figure 4.8), and the covariance
matrix from Buceros (idealised footprint , and homogeneous galaxy
selection; shown in Figure 4.9). The upper left panels show Ap for
&.- &, with each pixel showing the value for a single log-spaced
bin in angular separation, 6, between 6 = 0.1 arcmin and 6 = 300
arcmin. The upper right and lower left panels show the same, but
for the change in correlation between &, and &_, while the lower

right panels show the change in correlation of £ with itself.
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4.19 Bitmap showing the kpj, measure from comparing the analytical

4.20

covariance matrix, Cov(&4, &4 ), and the Cov(&y, &) as calculated
from Buceros as four separate blocks. The uncertainties given for
each ki, are a measure of the potential degeneracy of ki, as given
by I'/2 as shown in Equation (4.19), where I' — 0 implies that ki,
is unique and I" — oo implies that kpj, 1S not a unique minimum. The
left 4 x 4 bitmap shows kp,;, when only considering the covariance
terms which correlate the uncertainties from tomographic bins S1
to S5 (as in KiDS-1000). The right 4 x 4 bitmap shows ki, when
considering all covariance terms from tomographic bins S1 to S6 (as
in KiDS-Legacy). Lighter panels imply that the given block of the
analytical covariance matrix is overall less noisy than Covpyceros,

darker green panels imply the reverse. . . . . . .. ... ... ...

Bitmap of the difference in the correlation coefficients, Ap, between
the analytic covariance matrix (see Figure 4.8), and the covariance
matrix from Egretta (realistic footprint, and inhomogeneous and
anistropic galaxy selection; shown in Figure 4.11). The upper left
panels show Ap for &, - &, with each pixel showing the value for
a single log-spaced bin in angular separation, 6, between 6 = 0.1
arcmin and 6 = 300 arcmin. The upper right and lower left panels
show the same, but for the change in correlation between &, and
&_, while the lower right panels show the change in correlation of

E_withitself. . . . ... ... ...
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Relative difference between the standard deviations calculated from
the diagonal elements of the covariance of two-point correlation
functions, Cov[&.(60),EL(0)], as measured from 5,000 realisations
of Cygnus and from 5,000 realisations of Buceros, as a function of
angular separation, 6, in arcmin. The orange lines show the relative
differences between Cov[E,(0),E,(0)], while the blue lines show
the same for Cov[E_(0),&_(0)]. Each panel shows the difference

in signal for a given tomographic bin pair of the bins from S1 to S6.

Bitmap of the difference in the correlation coefficients, Ap, be-
tween Cygnus (realistic footprint, and homogeneous galaxy selec-
tion; shown in Figure 4.10), and Buceros (idealised footprint , and
homogeneous galaxy selection; shown in Figure 4.9). The up-
per left panels show Ap for &,- &, with each pixel showing the
value for a single log-spaced bin in angular separation, 8, between
6 = 0.1 arcmin and 8 = 300 arcmin. The upper right and lower left
panels show the same, but for the change in correlation between &
and &_, while the lower right panels show the change in correlation

of & withitself. . . ... ... ... ... ..

Bitmap showing the k,;, measure between the diagonal blocks
of the covariance matrix calculated from the Cygnus simulations,
Coveygnus (see Figure 4.10), and the covariance matrix calculated
from the Buceros simulations, Covpyceros (Se€ Figure 4.9). Lighter
panels imply that the given block of Covcygnys is overall less noisy
than Covpyceros, darker green panels imply the reverse. The second
colourbar shows the difference in the entropy, AS, associated with
a given kni, for n =9 (i.e. each block matrix in a given panel be-
ing made up of 9 x 9 elements). Each panel gives kp,;, for a given

tomographic bin combination of the bins from S1to S6.. . . . . . .
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Bitmap showing the kp;, measure from comparing the Cov(&+,&y)
as calculated from Cygnus and the Cov(&y, &) as calculated from
Buceros as four separate blocks. The uncertainties given for each
kmin are a measure of the potential degeneracy of ki, as given by
I'/2 as shown in Equation (4.19), where I' — 0 implies that ki,
is unique and I" — oo implies that kp;, 1S not a unique minimum.
The fits from which I" is estimated are shown in Figure 4.14. The
left 4 x 4 bitmap shows kp,;; when only considering the covariance
terms which correlate the uncertainties from tomographic bins S1
to S5 (as in KiDS-1000). The right 4 x 4 bitmap shows kp,;, when
considering all covariance terms from tomographic bins S1 to S6
(as in KiDS-Legacy). Lighter panels imply that the given block of
Coveygnus 1s overall less noisy than Covpyceros, darker green panels

imply thereverse. . . . . . . . ... ... ...

Histogram of the number of pixels on the KiDS-1000 footprint (see
Figure 3.8) as a function of the root-mean square of the background
noise, Oyms. The solid vertical line marks the mean G, of the dis-

tribution, while the dashed vertical line marks the median Gypg. . .

Plot of the ratio of Gégr_, the approximate shape noise contribution in
Egretta after a shift of —7 x 10™* in root-mean square of the back-
ground noise, Oy, OVET Oggr,, the approximate shape noise contri-
bution in Egretta before the shift, as a function of the tomographic
bin pair. The bin pairs are all 21 unique combinations of the six

KiDS-Legacy tomographicbins. . . . . . . .. .. ... ... ...
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4.28
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Relative difference between the standard deviations calculated from
the diagonal elements of the covariance of two-point correlation
functions, Cov[&.(60),EL(0)], as measured from 5,000 realisations
of Egretta and from 5,000 realisations of Cyngus, as a function of
angular separation, 6, in arcmin. The orange lines show the relative
differences between Cov[E,(0),E,(0)], while the blue lines show
the same for Cov[E_(0),&_(0)]. Each panel shows the difference

in signal for a given tomographic bin pair of the bins from S1 to S6.

Bitmap of the difference in the correlation coefficients, Ap, between
Egretta (realistic footprint, and inhomogeneous and anisotropic
galaxy selection; shown in Figure 4.11), and Cygnus (realistic foot-
print , and homogeneous galaxy selection; shown in Figure 4.10).
The upper left panels show Ap for &,- &, with each pixel show-
ing the value for a single log-spaced bin in angular separation, 0,
between 8 = 0.1 arcmin and 6 = 300 arcmin. The upper right and
lower left panels show the same, but for the correlation between &
and &_, while the lower right panels show the covariance of £_ with

itself. . . . s

Bitmap showing the k,;, measure between the diagonal blocks
of the covariance matrix calculated from the Egreffa simulations,
CoVggretta (see Figure 4.11), and the covariance matrix calculated
from the Cygnus simulations, Covcygnus (see Figure 4.10). Lighter
panels imply that the given block of CovEgyeya i Overall less noisy
than Covcygnus, darker green panels imply the reverse. The second
colourbar shows the difference in the entropy, AS, associated with
a given kni, for n =9 (i.e. each block matrix in a given panel be-
ing made up of 9 x 9 elements). Each panel gives kp,;, for a given

tomographic bin combination of the bins from S1to S6.. . . . . . .
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4.30 Bitmap showing the k,;, measure from comparing the Cov (&, &x)

4.31

as calculated from Egrerta and the Cov (&4, &) as calculated from
Cygnus as four separate blocks. The uncertainties given for each
kmin are a measure of the potential degeneracy of ki, as given by
I'/2 as shown in Equation (4.19), where I' — 0 implies that kp, is
unique and I — oo implies that kp,j, 1s not a unique minimum. The
left 4 x 4 bitmap shows ki, when only considering the covariance
terms which correlate the uncertainties from tomographic bins S1
to S5 (as in KiDS-1000). The right 4 x 4 bitmap shows ki, when
considering all covariance terms from tomographic bins S1 to S6
(as in KiDS-Legacy). Lighter panels imply that the given block of
CoVEgretta 1s overall less noisy than Covcyenus, darker green panels

imply thereverse. . . . . . . . .. .. ...

Relative difference between the standard deviations calculated from
the diagonal elements of the covariance of two-point correlation
functions, Cov[&4(60),E1(0)], as measured from 5,000 realisations
of Egretta and from 5,000 realisations of Buceros, as a function of
angular separation, 8, in arcmin. The orange lines show the relative
differences between Cov[E, (0),&(0)], while the blue lines show

the same for Cov[E_(0),&_(0)]. Each panel shows the difference

38
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Chapter 1

Introduction and Background

1.1 The Standard Model of Cosmology

Cosmology concerns itself with the study of the physical laws which describe the
formation, evolution and composition of the Universe at the largest scales. Over the
last few decades, a consensus has emerged within the field of cosmology based on
a single model being able describe most, if not all, astronomical observations that
have been made so far. The model in question is known as the “Standard Model of
Cosmology” or the Lambda Cold Dark Matter (ACDM) model (Peebles, 1982; Blu-
menthal et al., 1984). With the advent of precision cosmology and the proliferation
of experiments probing different scales and time domains, the ACDM model has
been remarkably successful in explaining the observations. ACDM is in agreement
with observations at large scales in the early Universe from the cosmic microwave
background (Mather et al., 1990; Bennett et al., 2013; Planck Collaboration et al.,
2020), while also being in agreement with late-Universe probes at different scales:
supernovae (Riess et al., 1998; Perlmutter et al., 1999), Baryonic Acoustic Oscilla-
tions (BAOs; Cole et al. 2005; Eisenstein et al. 2005; Blake et al. 2011; Beutler et al.
2011; Anderson et al. 2012), cosmic shear (Kaiser et al., 2000; Wittman et al., 2000;
Van Waerbeke et al., 2000; Bacon et al., 2000; Heymans et al., 2013; Hildebrandt
et al., 2017; Asgari et al., 2021; Amon et al., 2022, 2023), and many more. Having
said this, it is worth noting that some potential inconsistencies within ACDM have
been found in recent years (Hy tension, Sg discrepancy, etc.), but these could still be

consistent with systematic effects.
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The standard model of cosmology is built upon the general theory of relativity
(GR; Einstein 1915; Hilbert 1915). As is shown in detail in Section 1.1.1, GR es-
tablishes the geometry of the Universe, the dynamics of this geometry and the inter-
action between the geometry of the Universe and its contents. Additionally, ACDM
makes a series of assumptions within the framework of GR often referred to as the
“cosmological principle”. This principle states that at sufficiently large scales the
Universe is spatially homogeneous and isotropic (Robertson, 1936; Walker, 1937).
In other words, the cosmological principle is an assumption which implies that ob-
servations of the Universe at large scales are independent of the position of the
frame-of-reference within the Universe. As a consequence, one can derive the
Friedmann-Lemaitre-Robertson-Walker metric (Friedmann, 1924; Lemaitre, 1927)
which ingrains homogeneity and isotropy within field equations of GR (see Sec-

tion 1.1.2 for a detailed discussion).

With GR and the cosmological principle, the dynamics of ACDM are deter-
mined. To model the contents of the Universe which are subject to these dynam-
ics, in Section 1.1.3, I present the “ingredients” of ACDM. These can be classed
into broadly four types: baryonic matter, cold-dark matter, dark energy, and radi-
ation. Baryonic matter includes all non-relativistic matter which can interact with
itself and radiation through the forces described by the Standard Model of Particles
Physics (see Mann 2010 for a review). Cold dark matter is a term used for non-
relativistic matter which does not couple to any of the forces in the Standard Model
of Particle Physics nor does it interact with itself. Cold dark matter is assumed to
only have a causal effect on other components of the Universe through gravitational
interactions. The third type of ingredient of ACDM is known as dark energy. Al-
though other hypotheses exist, dark energy is generally understood as a “cosmolog-
ical constant” often represented with a A. This implies that it is a scale-independent
vacuum energy which homogeneously permeates all of space-time which can be
interpreted as negative pressure in the field equations of GR. Lastly, there is the
radiation or “hot matter” component of ACDM which is mostly made up of to two

distinct types of particles: electromagnetic radiation and relativistic matter particles,
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such as neutrinos at early times.
All these types of matter and energy which make up the Universe have distinct
properties that influence the growth of large-scale structure in the Universe as is

discussed in Section 1.2.

1.1.1 General Relativity

As an extension from special relativity (Einstein, 1905) to accelerating frames of
reference, Einstein’s theory of general relativity (Einstein, 1915; Hilbert, 1915) has
been accepted as the prevailing theory of gravity. It is capable of accurately describ-
ing the orbits of planets (Clemence, 1947; Biswas & Mani, 2008), the gravitational
lensing of light (Dyson et al., 1920), the propagation of gravitational waves (Abbott
et al., 2016), the existence of black holes (from a direct image: Event Horizon Tele-
scope Collaboration et al. 2019; from black hole mergers: Abbott et al. 2016; from
the motion of stars: Eckart & Genzel 1996; from active galactic nuclei: e.g. Harms
et al. 1994; from invisible companions: e.g. Rivinius et al. 2020; from X-ray bursts:
e.g. Kaaret et al. 2017), etc., while also reproducing all predictions from special
relativity and Newtonian mechanics.

The general theory of relativity is based on some key axioms. First, there is the
Principle of the Equivalence of Gravitation and Inertia, also known as the Equiv-
alence Principle. According to Weinberg (2008), the Equivalence Principle states
that “at any space-time point in an arbitrary gravitational field there is a locally iner-
tial coordinate system in which the effects of gravitation are absent in a sufficiently
small space-time neighborhood of that point” (p. 511). Here, “locally inertial”
refers to the fact that for infinitesimal intervals of space-time, a Minkowski metric
applies, i.e. the laws of motion as given by special relativity apply (Einstein, 1905).
This property is directly akin to an n-dimensional manifold being homeomorphic to
an R"-space. Therefore, according to the Equivalence Principle, space-time must
be described by a manifold (see Weinberg 1972 for a review of the properties of
such objects). Secondly, we must assume a form for the gravitational potential to
fix the constants within GR. Following the approach in Weinberg (1972), this can

be done by assuming the Poisson equation
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V2® =47Gp, (1.1)

where V is the Laplacian, ® is the gravitational potential, G is Newton’s gravita-
tional constant and p is the mass density in the non-relativistic limit. Consider-
ing a weak static field, the time-component of the underlying metric of the four-

dimensional space-time manifold, gy, is given by

goo = 1 +2®, (1.2)

where here and hence forth ¢ = 1 and the metric is assumed to follow the convention
which scales the time-like coordinate by a factor of +1, while scaling the three
space-like coordinates by a factor of —1 (+, -, -, -). Taking into consideration that in
the non-relativistic limit the time-time-component of the stress-energy-tensor, 7y,

is Top =~ p, the Poisson equation becomes

V2g00 = 87GTop. (1.3)

Taking this equation as an ansatz for the general relation of 7y, renaming the
left-hand-side as a tensor and invoking the Equivalence Principle to extrapolate this

relation beyond the weak field limit, one finds that

where Gy is the Einstein tensor and 7}y is the stress-energy tensor which for a pre-
fect fluid in equilibrium is given as T,y = diag[p, P, P, P] where P is the pressure of
the fluid. In general, one can construct a field consistent with G, from a Riemann

curvature tensor, R‘;L op for some covector in space-time, W,, which is given by

RY oWy = [V, VW, (1.5)

where V4 is the covariant derivative and [V, V] indicates the commutator of the

covariant derivative with itself. Here is where the third axiom of GR is involved:
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the “vanishing torsion assumption”, i.e. that parallel-transported vectors are not
rotated/do not experience torsion. Mathematically, this implies that [Va,Vﬁ] =
VaVpg —VgVa. Consequently, the Christoffel symbol, Fﬁv, appearing within the
covariant derivative, which is given by VW, = doW, — F‘;‘WWO, with dy = d/dx*

for a given four-vector x%, must be a symmetric tensor of rank 3 given by

1
Ty = 58 (9vgpu +dugpy — Ipguv)- (1.6)

A%
pap’

contract it as R}, = Ryy to define the Ricci tensor, and in turn contract RY =R

Therefore, the Riemann curvature tensor, R is anti-symmetric, and one can
to define the Ricci scalar. Ensuring that Gy is consistent with the anti-symmetric
nature of R‘;L ap’ taking into consideration that Gy = Ty = 0 and Goo = V2 goo In

the weak static field limit, one can obtain the Einstein field equations as follows

1

However, Equation (1.7) still misses one axiom commonly included when writ-
ing the Einstein field equations for the whole Universe: the existence of a vac-
uum energy which counteracts the effect of gravity, i.e. dark energy. This can be

achieved by including a term with a “cosmological constant”, A, as follows

1

Although this cosmological constant is nowadays used to model the vacuum energy
which drives the accelerated expansion of a non-static Universe (Lemaitre, 1927,
Riess et al., 1998; Perlmutter et al., 1999), it was originally proposed by Einstein
to balance the Einstein field equations such that the Universe could be static (Ein-
stein, 1917). In Einstein’s original work, the cosmological constant is included as
an additional term added to the Einstein tensor, as shown in this work. However,
Equation (1.8) allows some freedom of interpretation regarding the nature of the
cosmological constant. The g;,vA term can be freely added either to the left-hand

side or to the right-hand side of the Einstein field equations, as both cases satisfy
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the Bianchi identities (Voss, 1880; Bianchi, 1902). With this, the cosmological con-
stant, when kept on the left-hand side of the Einstein field equations, can be treated
as a constant scalar curvature inherent to space-time which contributes to the Ein-
stein tensor. Equivalently, when the cosmological constant is on the right-hand side
of the equation, it can be interpreted as a perfect fluid which contributes a constant
energy and pressure to the stress-energy tensor. Although the latter interpretation is
the most commonly used, within the context of general relativity, both are mathe-

matically equivalent.

Equation (1.8) fully captures the dynamics of the Universe and its contents
within a four-dimensional torsion-free space-time with a constant vacuum energy.
At the same time, it gives the freedom to select any metric which may define the
curvature of space-time, while also giving the freedom of including different types

of energy and matter in the stress-energy tensor.

1.1.2 Homogeneity, Isotropy and the Friedmann-Lemaitre-
Robertson-Walker Metric

Building upon the cosmological Einstein field equations, one can invoke the “cos-
mological principle”: at the largest scales, the Universe is spatially homogeneous
and isotropic (Robertson, 1936; Walker, 1937). As a consequence, the metric of
space-time must not have a preferred spatial direction which could allow the defi-
nition of a frame of reference that violates isotropy. Allowing the space-like coor-
dinates of the metric to vary as a function of the time-like coordinate (i.e. allowing
the Universe to evolve), we may define the following metric (Friedmann, 1924;

Lemaitre, 1927; Robertson, 1936; Walker, 1937),

ds? = gy (x)detdx¥ = dr® — a?(1)dE?, (1.9)

where ds is an infinitesimal interval, x* is a four-vector existing on the manifold
defined by g,,v(x), ¢ is time, a(t) is the scale factor at time, ¢, and X is a three-vector
which defines a three-dimensional space with a uniform curvature. The latter can be

defined in any Lorentz invariant coordinate system. For the purposes of this thesis,
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two coordinate systems are of interest: hyperspherical coordinates (¥, 6, ¢) and

reduced-circumference polar coordinates (2, 0, ¢). The former are given by

dx? = dy’ + f2(x) [d6* +sin*(8)d¢?], (1.10)

where x is the comoving distance, 8 and ¢ are orthogonal angular coordinates,
and f()) is the transverse comoving distance defined as a function of comoving

distance as follows

(

k~asin(gkz),  ifk>0,

fex) =19 x. ifk=0, (1.11)

k|~ 2sinh(x|k|?), ifk <0,
\

where k is the Gaussian curvature of space-time at a(¢) = 1 (in most cases, the
Universe is assumed to be flat, so kK = 0). The radial coordinate, the comoving
distance, ¥, is defined such that it is constant between two frames of reference which
are coupled to the expansion of the Universe. The transverse comoving distance,
fi(x), is similar to the comoving distance in that it also accounts for the expansion
of the Universe. In addition, it also accounts for any deviations in the path length
caused by the curvature of the underlying space-time manifold, as parametrised by
k.

Alternatively, it is also useful to express the FLRW metric given in Equa-

tion (1.9) in reduced-circumference polar coordinates as follows

d.2?

2 _
dx 1 —k2?

+27%[d6* +sin*(0)d¢?], (1.12)

where the radial coordinate, 2, is equivalent to the angular comoving distance,
2 = fi(x). Note that Equations (1.10) and (1.12) are equivalent in their represen-
tation of the FLRW metric. The distinguishing quality between the two metrics is
the choice of radial coordinate: the comoving distance, ), for hyperspherical co-
ordinates, and the angular comoving distance, 2, for reduced-circumference polar

coordinates.
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Regardless of how we define the set of coordinates, when substituting the
FLRW metric in Equation (1.9) into the cosmological Einstein field equations in
Equation (1.8), we obtain the following set of independent equations known as the

Friedmann equations (Friedmann, 1924),

2
a(t) k A 8nG
[a(t)] tZT3T 3P (119
i) A 471G
%—gz—%(pﬁp), (1.14)

where d = da/dt. As a(t) gives the relative scaling of distances at a given time, d/a
from Equation (1.13) is proportional of the speed at which the Universe expands,
while d/a from Equation (1.14) is proportional to the acceleration of the expan-
sion speed of the Universe. Since these quantities are often used in cosmological
calculations, it is useful to fold them into the Hubble parameter, H(z), as follows

(Lemaitre, 1927),

H(t) = % = HyE(t), (1.15)

where Hj is the Hubble constant, i.e. the Hubble parameter today, and E () is the
dimensionless Hubble parameter as a function of time. Hy is one of the main in-
dependent parameters used when constraining ACDM from observations as many
cosmological probes are sensitive to the expansion history of the Universe. Due
to its omnipresence, in the literature, it is often expressed using the so-called little
h, which is defined such that Hy = 100hkms~'Mpc~!. It is also of historical sig-
nificance, as the first time it was measured (Hubble, 1929) by observing a linear
relation between the luminosity distance, Dy, of nearby galaxies and their associ-
ated recession speed, v, such that Hy = v/Dy, > 0; it disproved the notion of a static
Universe.

This measurement by Hubble (1929) made use of an important effect to mea-
sure the luminosity distances, Dy, which is at the core of all cosmological mea-

surements in modern cosmology: cosmological redshift. Redshift is a phenomenon
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which occurs when the wavelength of light is stretched (i.e. shifted towards the red

end of the electromagnetic spectrum), and it is defined as follows

Z:W, (1.16)

where A (fops) is the wavelength of light as seen by an observer, while A(z) is the
wavelength of the light at the time of its emission by the source, . Redshift can
occur for multiple reasons: the light source might have a peculiar velocity with
respect to the observer causing a redshift due to the Doppler effect, or the light
source might be in a gravitational potential, so there is a gravitational redshift due
to the light travelling through a curved space-time. Besides such cases, the type
of redshift of particular interest to the work presented in this thesis is the redshift
caused by the cosmological expansion of the Universe. According to the FLRW
metric, the wavelengths given in Equation (1.16) scale linearly with the scale factor,

a(t), such that

—1, (1.17)

where a(tops) is taken to be equal to one when the observation is made at the
present day. Consequently, any instance of the scale factor, a(f), can by re-
placed by 1/(1 +z), so, for example, the luminosity distance can be expressed as
Dy = a(t) fr[x ()] = fi[x ()] /(1 +z). In other words, measuring cosmological red-
shift allows one to directly probe the scale factor at a given time, so the expansion

history of the Universe can be deciphered.

1.1.3 Ingredients of the Universe

As shown in Sections 1.1.1 and 1.1.2, the ideas of GR and the FLRW metric allow
one to fully describe the expansion history of space-time. As is apparent from the
dependence of the Friedmann equations (1.13) and (1.14) on the density, p, and
pressure, P, of the fluids within the Universe, the dynamics of a given component

ingredient of the Universe will depend on its equation of state given by
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w

3 (1.18)

Il
|

where w is a dimensionless ratio. To define the dynamics, we consider only the 70V
momentum terms of the stress-energy tensor, THY = diag[p(z), P(t), P(t), P(t)],

and invoke conservation of momentum, V, 7% = 0, which gives that

3a(t)
a(t)

which is known as the continuity equation. When solving this differential equation,

p(t)+ (p(t)+P(t)) =0, (1.19)

one finds that the density of the fluid, p, in general evolves according to

p(t) = poa(t) >+, (1.20)

where pg is the initial density. It is often convenient to express these densities as
multiples of the critical density, P, Which can be thought of as the total energy

density contributed by the contents of a flat Universe (i.e. k = 0) as follows

Perit(t) = Zpi(t), (1.21)

where p;(t) is the energy density of any constituent form of matter, radiation, etc.,
which we choose to include in our model of the Universe, but we exclude any con-

tribution from curvature (i # k). For a flat Universe, the critical density is then

given by
3H?(t
Perit (1) = 8ﬂé) : (1.22)
Thence, we may define a density parameter, €2, as follows
t
o) = LW (1.23)

Perie(t)
With this, it is possible to fully characterise the properties and dynamics of a given

ingredient within a FRLW space-time through its w and Q.
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1.1.3.1 Baryonic Matter

In cosmology, “baryonic” matter refers to all massive non-relativistic particles made
up of quarks and charged leptons as described by the Standard Model of Parti-
cle Physics. This definition includes charged leptons which would strictly not be
considered constituents of baryons in the field of particle physics. However, in
cosmology, “baryons” are essentially all massive particles which couple to the elec-

tromagnetic force, so they can be observed.

With their mass, baryons possess a lot of inertia compared to their average
kinetic energy such that they would not spontaneously diffuse, wherefore a baryonic
fluid with a density parameter, 2}, would not exert any pressure on its surroundings
and its w = 0. Given Equation (1.20), p o< a3, so that if Q, dominates the energy

density of the Universe, the homogeneous evolution of the Universe is given by

E*(t) ~ Qupa(t) > = Qpo[l +2(1)]*. (1.24)

where Qy,  is the baryonic density parameter at £ = 0.

Beyond its effect on the expansion history of the Universe, baryonic matter
also impacts the formation, growth and evolution of structure. Firstly, it makes the
Universe clumpier and denser by contributing 4.9 +0.1% to the energy density of
the Universe and approximately 19% of the matter in the Universe (Planck Collab-
oration et al., 2020). Secondly, baryonic matter self-interacts, so at small scales,
where electromagnetic forces become relevant, structure formation is limited by
the pressure exerted from self-interactions (see Section 1.2.4 for a more detailed

discussion of this).

1.1.3.2 Cold Dark Matter

Cold dark matter refers to any kind of non-relativistic matter which does not self-
interact, but which can be subject to gravitational interactions. Despite many dif-
ferent hypothesis existing for the fundamental nature of dark matter (see Chapter
27 of Particle Data Group et al. 2020 for a comprehensive review), at this time,

there has not been a direct detection of any dark matter candidate particle. Nev-
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ertheless, there has been convincing observational evidence for its existence from
many probes. Firstly, it was originally hypothesised in order to account for the fact
that the visible/baryonic matter seen in clusters of galaxies is not enough to explain
the galaxies’ velocity dispersion (Zwicky, 1933), while also being able to account
for the lack of observed baryonic matter at the edge of galaxies in order to explain
the observed rotational curves of the galaxies as a function of the distance from the
centre (Rubin & Ford, 1970). Since then all modern cosmological measurements
have been consistent with approximately one quarter of the energy density of the
Universe being attributed to dark matter (Mather et al., 1990; Riess et al., 1998;
Perlmutter et al., 1999; Kaiser et al., 2000; Wittman et al., 2000; Van Waerbeke
et al., 2000; Bacon et al., 2000; Eisenstein et al., 2005; Blake et al., 2011; Bennett
et al., 2013; Heymans et al., 2013; Hildebrandt et al., 2017; Planck Collaboration
et al., 2020; Asgari et al., 2021; Amon et al., 2022; Li et al., 2023). Additionally,
measurements of strong gravitational lensing around the Bullet Cluster (also known
as 1E 0657-56) have shown with a 8o significance level that some form of dark
matter is always required to explain the observed gravitational lensing signal, even
when considering alternate theories for gravity beyond GR (Clowe et al., 2000).
This is because the Bullet Cluster is observed to have large spatial offset between
the centre of total mass and the centre of baryonic mass which cannot be explained

without any dark matter contributing to the mass of the cluster.

Although the existence of dark matter is nowadays mostly undisputed within
the field of cosmology, its nature is not as certain. Within ACDM (Peebles, 1982;
Blumenthal et al., 1984), it is assumed that dark matter is cold, i.e. that it is non-
relativistic and that it does not self-interact. Other types of dark matter have been
proposed which fit current observations at large-scales with a similar level of ac-
curacy as cold dark matter, but may deviate in their predictions for observations of
smaller-scale structure. Examples of such models are warm dark matter (a form
of dark matter which behaves relativistically at small scales and non-relativistically
at large scales; see Viel et al. 2013 for more details) and fuzzy dark matter (dark

matter made up of light bosons which would Compton scatter at small scales, but
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have a small probability of self-interaction at large scales; see Hu et al. 2000 for
details). Having said this, for now, it has not been possible to make precise enough
measurements of structure at small scales to significantly discern between cold dark
matter and any alternative hypothesis.

Similarly to baryonic matter, cold dark matter does not diffuse and exert ex-
ternal pressure. Hence, we may add another form of matter to the stress-energy
tensor with a density parameter, ., and w = 0, so that p o a3 if the Universe is

dominated by dark matter such that

E*(1) ~ Qca(t) 7 = Qe o1 +2(1)), (1.25)

where Q. ¢ is the dark matter density parameter at ¢ = 0. As cold dark matter’s den-
sity scales in the same way with the expansion of the Universe as baryonic matter,
their densities are often grouped together to define the matter density parameter of

the Universe, Q,,, as follows
Qn (1) = Qc(t) + Qp(2). (1.26)

Knowing that cold dark matter makes up 25.89 £0.57% of the energy density
of the Universe and approximately 91.23% of all matter in the Universe (Planck
Collaboration et al., 2020), from Equation (1.14), it becomes apparent that dark
matter is the driving factor in counter-acting the acceleration of the expansion of
the Universe. Simultaneously, its lack of self-interaction means that dark matter
structure could grow from the early Universe without scattering. All this allows us
to conclude that the signal of cosmological large-scale structure (see Section 1.2) is

mostly determined by the physics of dark matter.

1.1.3.3 Dark Energy

In Section 1.1.1, we have already introduced the concept of dark energy as one of
the assumptions to derive the cosmological Einstein equations of GR given by Equa-
tion (1.8). In this equation, dark energy is represented by a cosmological constant,

A, which is assumed to be the same at all points in space and at all times. From the
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Friedmann equations (1.13) and (1.14), we can see that A, if positive, drives the ac-
celeration of the scale factor, a(t). From Equation (1.14), it becomes apparent that
the term with d(z) o< A/3 could be folded into the stress-energy tensor by assuming
that dark energy is a fluid with w = —1. Consequently, evaluating Equation (1.19),
we trivially find that p(¢) = po for dark energy, i.e. the density of dark energy is
constant over time. Analogously to matter, we may therefore also define a density

parameter for dark energy, Q,, as follows

A

= —. 1.27
T (127)

QA

From that, we can model the dimensionless Hubble parameter in a dark energy

dominated Universe as follows

E%(1) ~ Q,. (1.28)

It is worth noting that extensions to ACDM exist which allow the w of dark
energy to vary with time, called wCDM. These are equivalent to different modifi-
cations of Einsteinian gravity and they are usually expressed in a parametric form
as follows w(t) = wo + [1 — a(t)]w,. However, these theories are not investigated
in this thesis and I will generally assume that w = —1. This assumption has proven
to be consistent with observations which found that w = —1.03 +0.03 (Planck Col-
laboration et al., 2020). Thus, it is safe to consider dark energy as a cosmological
constant with a constant density equivalent to approximately 70% of the energy den-
sity of the Universe (Riess et al., 1998; Perlmutter et al., 1999; Planck Collaboration
et al., 2020).

1.1.3.4 Radiation

All relativistic components in the Universe are typically classed as radiation. From
the Standard Model of Particle Physics, the only fundamental particles which are
typically relativistic are the bosons and the leptons without any electromagnetic
charge, i.e. the neutrinos. Out of the bosons, the only one which has a large enough

mean free path to be cosmologically relevant is the photon. Therefore, radiation in



1.1. The Standard Model of Cosmology 59
cosmology can be thought of as only being constituted by photons and neutrinos.

Additionally, most of the radiation in the Universe can be attributed to back-
ground radiation, i.e. a homogeneous and isotropic emission from the early Uni-
verse during which the emission rate of radiation was extremely large when com-

pared to today.

After the Big Bang (see 1.1.4), photons were produced everywhere in the early
Universe at high rates during baryogenesis (i.e. the creation of baryonic matter such
that the production of any anti-matter was outpaced) and big bang nucleosynthesis
(i.e. the condensation of gluons and quarks into nucleons, such as protons and
neutrons, as the Universe cooled). However, the photons’ mean free path length
remained shorter than a few kpc as long as the Universe was a hot plasma in which
all emitted photons were quickly absorbed or scattered. Once the Universe had ex-
panded more and cooled down, the electromagnetic binding energies were finally
sufficient to allow for recombination to occur at z ~ 1,100 (Weinberg, 2008). Dur-
ing recombination, the newly formed nuclei became neutral atoms which released
black body radiation until reaching their ground-state. Thanks to this, the Universe
was no longer opaque and filled with hot plasma, but instead it became transpar-
ent and electrically neutral. From this point on, photons were no longer in thermal
equilibrium with the rest of the Universe, i.e. photon decoupling had occurred. As a
result of this, the entire Universe is permeated with photons that were only in ther-
mal contact with matter at the time of recombination. Since these emissions have
experienced more than 13 Gyrs of cosmological redshift, their central wavelength is
now in the microwave regime, so it is known as the Cosmic Microwave Background
(CMB). Observing the CMB thus allows one to directly probe the temperature of the
Universe at recombination and any anisotropies in the emission due to primordial

density fluctuations (see Section 1.2.1).

Within the first second after the Big Bang, the Universe mostly consisted of
electrons, positrons, nucleons, photons and neutrinos. Electron-positron interac-
tions through the weak nuclear force were also coupled to neutrinos which meant

that they were all in thermal equilibrium. As the Universe expanded, the rate of
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electron-positron interactions slowed down considerably, so neutrinos thermally de-
coupled from the rest of the Universe. This event created the homogeneous and
1sotropic Cosmic Neutrino Background (CNB; see Lesgourgues et al. 2013 for a
detailed review) which is analogous to the CMB.

To define the equation of state of each type of radiation, it is useful to formalise
how the energy density due to radiation may be incorporated into the stress-energy
tensor. Since we know that the vast majority of radiation in the Universe comes
from homogeneous and isotropic radiation backgrounds, we may assume that the
distribution of radiation in phase space only depends on energy, momentum and
time. For particles with a momentum, P* = (E, p') where p' € R?, at time t, the

stress-energy tensor is given by (Lesgourgues et al., 2013),

d’p PHP,
BN v
i =g [ G g 1), (1.29)

where g is the number of internal degrees of freedom of the particle, p"i = p and
f(p,t) is the statistical distribution of particles in phase-space. The diagonal com-

ponents of T} (¢) give

d3
10 =p = | ek p0), (130)
. d3 2
Ti(r) = P(t) = —g/ (27:];25_15 (p.1). (1.31)

Since photons are massless and neutrinos have very small masses, we may take

E = p in both cases (Einstein, 1905). Combining Equations (1.30) and (1.31) gives
that P = p /3, so that p < a~* in a radiation-dominated Universe. In such a case

E*(t) = Qroa(t) ™ = Qro[l +2()]*, (1.32)

where Qg g is the density parameter for all types of radiation at # = 0, and it is given

by

Qr(1) = Qy(t) +Qy (1), (1.33)
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where Qy and Q, are the density parameters for photons and neutrinos, respectively.

To find the equation of state of neutrinos, we may take Equations (1.30) and
(1.31) and consider two cases: one where the particles in question are bosons (i.e.
photons, y) which follow Bose-FEinstein statistics and another where we consider
fermions (i.e. neutrinos, V) which follow Fermi-Dirac statistics. In each case,
f(p,t) takes the form of the joint Bose-Einstein/Fermi-Dirac distribution of the
corresponding particle-antiparticle pair. Assuming that the particles in question are

relativistic, one can show that

2 e
g_ogYT47 ifi=vy,
pi =3P, = , (1.34)
1Ty, ifi=v,

where Ty and T, are the temperatures at thermal equilibrium of the photon and
neutrino backgrounds, respectively. Given this, % = %(Ty/ T,)~*. Considering that
the specific entropy per comoving volume, s;, is given by s; = dP;/dT;, then s; o<
Tf3 . We also know that s; must be conserved which can be used to show that
at decoupling T, /T, = (4/11)'/3. Relating this back to Equation (1.34), we can

express the density of neutrinos as a function of the photon density as follows

Wl

T/ 4\3
Qv<r>=Nefoy<t>§<ﬁ) , (1.35)

where N is the effective number of neutrino species. Negr is included as an ad-
ditional parameter for two reasons. Firstly, historically it was not known with cer-
tainty how many active light neutrino generations there are. Nowadays, thanks
to electroweak measurements from Z-boson decays (ALEPH Collaboration et al.,
2006), we know that there are three different generations of neutrinos. Secondly, de-
spite there being three species of neutrinos, it is usually assumed that Nqg = 3.044
due to higher-order corrections from neutrino mixing and due to the neutrino de-
coupling not being instantaneous (de Salas & Pastor, 2016; Akita & Yamaguchi,
2020).
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1.1.4 Expansion History and the Big Bang

With all the ingredients of the Universe described in Section 1.1.3, we can combine
their impacts on the energy content and the background expansion of the Universe

to rewrite the Friedmann equations in Equations (1.13) and (1.14) as follows

H(t)?

= (Qe0+Qb0)alt) >+ (Qyo+Quo)alt) *+Qoa(t) > +Qn, (1.36)
0

where, for completeness, the density parameter due to the curvature in the FLRW
metric at t = 0, Q0 = —k/H, 2 is also included!. Figure 1.1 shows how each of
the terms in Equation (1.36) scales over the entire cosmic history of the Universe to
define the background expansion of the Universe.

When inspecting Figure 1.1, the Friedmann equations and the FLRW met-
ric, one may realise that the scale factor, a(t), asymptotically approaches a = 0 as
t —~ 1/Hy. Combined with the fact that a(z) > 0, this means that all space-like
coordinates within a FLRW metric tend to approach each other until they create a
singularity at a(t) = 0. This singularity, known as the Big Bang, can be thought
of as the origin of the time-like coordinate in the FLRW metric. Approaching this
singularity going back in time, p — o0 and T — oo. Thus, all matter in the Universe

was at some point in thermal contact.

1.2  Growth of Large-Scale Structure

The discussion of The Standard Model of Cosmology in Section 1.1 describes the
background expansion of the Universe as a perfect and homogeneous fluid described
by ACDM. However, as we know from observations (and from our own anthropo-
logical existence), the Universe is not perfectly homogeneous. In fact, it has struc-
ture even at large scales. These deviations from homogeneity can exist due to the
quantum mechanical nature of matter producing random fluctuations in the density

of the early Universe. Section 1.2.1 discusses the origins of these primordial mat-

'Note that from this point forward, I choose the shorthand notation for the density parameters
which drops the zero subscript, so unless time-dependence is explicitly stated, any Q is given at
t=0.
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Figure 1.1: History of the density parameters, Q;(z), of all of the ingredients of ACDM
discussed in Section 1.1.3 as a function of look-back time, ¢, in Gyrs and the
associated scale factor, a(r). The solid black line shows the density parame-
ter for cold dark matter, Q., the pink solid line shows the density parameter
for baryonic matter, Qy, the purple dashed line shows the density parameter
for dark energy, Q,, the blue dot-dashed line shows the density parameter of
neutrinos, €., and the orange dotted line shows the density parameter of pho-
tons/light, Q. The vertical light gray dashed line indicates recombination at
7z~ 1,100. Figure made by the author in accordance with Planck Collaboration
et al. (2020).

ter fluctuations, how they grew to cosmological scales with inflation (Guth, 1981;
Linde, 1982), and shows how they are typically modelled within ACDM. In Sec-
tion 1.2.3, I show how the primordial fluctuations grow with time within the linear
regime. To complete this, in Section 1.2.4, I discuss how at small scales baryonic
effects cause deviations from linear growth of structure, and how such deviations

may be modelled.

These variations in structure are then traced by the galaxies and their dark
matter halos which form in the late Universe, allowing us to use galaxy observations

as probes of the underlying large-scale structure (see Section 1.3).
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Figure 1.2: Map of the temperature anisotropies, 67, observed in the cosmic microwave
background by the ESA Planck space observatory (Planck Collaboration et al.,
2020). The grey areas indicate pixels which mask the galactic foreground. Fig-
ure made by the author with the Planck Collaboration et al. (2020) data.

1.2.1 Primordial Matter Fluctuations

After the Big Bang, as a(r) in the FLRW metric (see Section 1.1.2) increases, the
Universe expands, cools down and matter particles begin to appear, while radiation
is emitted as discussed in Section 1.1.3.4. Since the creation, annihilation, emis-
sion and scattering of the fundamental particles in the early Universe are inherently
stochastic processes governed by quantum mechanics, it is at this stage that ran-
dom fluctuations in the underlying density of the Universe appear. The overdense
regions of these fluctuations become seeds of attractors which first aggregate dark
matter and which, after recombination, aggregate baryonic matter too.

At first, these fluctuations are at subatomic scales which can grow in scale as
the Universe expands. However, when taking into consideration observations of
large-scale structure such as the CMB shown in Figure 1.2, the expansion rate as
predicted by standard ACDM is not enough to explain the scales of the fluctuations
at recombination. Some additional problems also arise with this picture of the seeds

for large-scale structure growth. From Figure 1.2, one can infer that the Universe is
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remarkably homogeneous at recombination with a root-mean square of the temper-
ature fluctuations deviating by only 0.1% from the mean temperature of 7' ~ 2.725
K (Planck Collaboration et al., 2020). However, this seems highly unlikely to be
the case by the time recombination occurs at z ~ 1,100 when only considering the
expansion history of the Universe as shown in Figure 1.1. To quantify this, we can
define the particle horizon, dherizon(z), as the maximum angular diameter distance
which a particle travelling at the speed of light could have travelled at a given age

of the Universe, fag¢(2) as follows

tige(2) df 1 [ dz
dhorizon(z) = a(z)/

A a(0) =11z HE) (1.37)

Since the Universe is matter-dominated during recombination, we may assume

Equation (1.25) applies, such that

2
d orizon - 1—(1— —1/2 . 1.38
horen(2) = g |09 138)

Thus, at recombination, dporizon(z = 1,100) ~ 2 degrees. This implies that a given
point in the sky at the time of recombination only had time to be in causal contact
with the matter within two degrees around it. In other words, it is highly unlikely
for the entire cosmic microwave background to be approximately in thermal equi-
librium as observed if the expansion history implied by ACDM is correct. This is
known as the horizon problem and it inspired the proposition of one more ingredi-
ent to the Universe: an inflaton field (Guth, 1981; Linde, 1982). Inflation theory
proposes a scalar field with negative pressure, akin to dark energy, which drives a
brief period of exponentially accelerated expansion of the Universe between 10736
and 10732 seconds after the Big Bang. With that, the inflaton field greatly expands
the particle horizon at recombination to be larger than the observable Universe, as is
observed in the CMB. Simultaneously, it also solves the so-called flatness problem,
which is concerned with the apparent fine-tuning needed in ACDM to ensure that
the observed Gaussian curvature in the FLRW metric, k =~ 0. Inflation solves this

too by expanding space-time rapidly to such an extent that any non-zero curvature
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vanishes to near zero even at the scales of the observable Universe. This hypothet-
ical scalar field is then thought to decay away into fundamental Standard Model
particles and contribute to the radiation density of the Universe.

Another consequence of this rapid expansion due to inflation is that it predicts
that the primordial curvature fluctuations of the Universe are distributed as a scalar
near-Gaussian random field of curvature perturbations in three-dimensional space,

Z . This random field is given by (Liddle & Lyth, 2000),

(Z()Z(K)*) =875 (k— k') Px(K|), (1.39)

where (-) indicates the average over all k and ', k is the three-dimensional wavevec-
tor, Py (|k|) is the power spectrum of the primordial curvature fluctuations, which is

typically parameterised with a power law as follows

ng—1
212 k
Pa(k]) = T3 As (k'—') , (1.40)

P Kpivor
where A is the primordial amplitude which correlates with the energy scale a which
inflation is onset, ng is the scalar spectral index which is a function of the duration of
inflation, and Ky 1s a reference pivot wavenumber. As ng is measured to be close to
one, i.e. ng = 0.965 +0.004 (Planck Collaboration et al., 2020), the power spectrum

of the primordial curvature fluctuations is considered “quasi scale-invariant™.

1.2.2 Perturbation Theory

The fluctuations in density in the early Universe discussed in Section 1.2.1 and their
growth over time is described through the modelling of localised small perturbations
from the mean of the density field in space. This can be done through expanding
the Einstein field equations for the FLRW metric for small density perturbations
(Lifshitz, 1946; Lifshitz & Khalatnikov, 1963) which has led to the development of
gauge-invariant covariant perturbation theory (Bardeen, 1980; Kodama & Sasaki,
1984; Ellis & Bruni, 1989; Ellis et al., 1989; Mukhanov et al., 1992). In this frame-
work, the stress-energy tensor in Equation (1.8) is perturbed as Tyy — Ty + 6Ty

However, for the purposes of modelling observations of large scale structure made



1.2.  Growth of Large-Scale Structure 67

by cosmological surveys, such a treatment is not strictly necessary and Newtonian
perturbation theory is a good approximation. Newtonian perturbation theory arises
out of relativistic perturbation theory when only considering the scalar perturba-
tions to the stress-energy tensor given by 0p and 8 P. The basis of Newtonian per-
turbation theory is the so-called Newtonian or shear-free gauge which makes any
non-Newtonian effects on the density perturbations disappear, such that the Poisson
equation as given in Equation (1.1) fully describes gravitational interactions. Addi-
tionally, we also assume that the energy and matter in the Universe can be modelled
as a perfect fluid such that the continuity equation given in Equation (1.19) and

Euler’s equation (Euler, 1757) apply. The latter is given by

Ju 1
au V)u=—-V,P—V .
3 r—l—(u ru 5 P P, (1.41)

where r and ¢ represent the physical space and time coordinates and u is the velocity

distribution of the perfect fluid (which is assumed to be |u| < ¢).

Firstly, we transform these equations into comoving spatial coordinates, X, as

r = a(t)X. Therefore, Equations (1.1), (1.19) and (1.41) become

Vi® = 4nGa’p, (1.42)
a .
9P| %y Vep+ Vs (pu) =0, (1.43)
dt |y a
du ) 1
a—| —aX-Vsu+u-Vsu=——VgP - Vs, (1.44)
ot |g p

where u(Z,7) = a(t)X(t) +a(t)v(Z,t) and v = ¥ is the peculiar velocity of the fluid.

Next, we apply a small perturbation in the density as follows

p(Et) = p(t)+6p(E,1) =[148(X,1)]p(1),
P(Z,1) — P(t) + 8P(,1), (1.45)

D(X,t) — D(t) + 5P(Z,1),

where §(X,7) is the matter/energy density contrast from the mean density, p(7),
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which is associated with the mean pressure, P(t), and the mean gravitational poten-
tial, ®(¢). Upon making these substitutions and subtracting the zeroth-order terms,

the perturbed fluid equations are given by

Vi8® = 4nGa’pé, (1.46)
5§+ vy (148 =0, (147)
a
i Ly vgw——— L _visp-lvgse (1.48)
AR A T R |

This system of non-linear differential equations can be combined by differen-
tiating Equation (1.47) with respect to time and combining it with Equations (1.46)
and (1.48) such that

w24 . _ 1 1 1 VséP
0+ ;5 —471'Gp5 = a—2Vz : (V-VzV) — a—z[aVz- (5\’)] + azﬁVZ . 1o (1.49)

This equation is valid for all orders of ¢ including non-linear orders which
take into consideration the Hubble friction, but higher than second-order terms only

become relevant for large values of S P.

1.2.3 Linear Structure Growth

Assuming that the matter/energy density contrast of the Universe is small, § < 1,
and neglecting any other forces which may be at play other than fluid pressure and
gravity, we may linearise Equation (1.49) such that

.y 3o,

0+ —086—4nGpd = V59, (1.50)

a a

where ¢ is the speed of sound within the perfect fluid defined as cZ = §P/pé.
Rewriting this equation for the Fourier transform of & (Z,¢), we obtain

k[P

2 2a(t) & C; < B
S(kir)+ oy Bk + | o —4nG§(r)] §(k,t) =0, (1.51)

where k is the comoving wavevector in E-space and & (k,7) is defined as
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S(k,1) = / e *E§(T 1) (1.52)
If 4Gp(t) > |k|>c2 /a(t)?, the form of Equation (1.51) allows one to separate

the spatial and temporal components of S(k, t), so one can define

D(t)+2H(t)D(t) — 4nGp(t)D(t) = 0, (1.53)

where H(t) is again the Hubble parameter and D(¢) is the linear growth rate of
structure. Such a separation implies that, if the initial conditions for the density
contrast field are known, it is possible to get the density contrast at any time, 7, to
first order just by applying the linear growth rate, D(¢), such that 5 (k,) = D(¢) S (k).
This assumption of scale-independent linear structure growth breaks down in the
small-scale regime (i.e. large |k|). From Equation (1.51), we find that the limit of

this regime is given by the Jeans scale, kj, as follows (Jeans, 1902),

(1.54)

As |k| — ky, the scale-dependent & (k, ) term in Equation (1.51) becomes dominant,
such that any oscillations in the matter fluid at such small scales would grow in a
scale-dependent manner. Subsequently, for |k| > kj, the oscillations cease growing
at all. During the radiation-dominated era and assuming a baryonic matter density
of @y, = 0.04, it can be shown that kj =~ (1 +2z)?/(2 x 10°Mpc) (Longair, 1989). k;
is minimal at matter-radiation equality, zeq =~ 3,400, giving ky ~ 1Mpc~!. This im-
plies that, during the radiation-dominated era, structure at extragalactic scales grows
in a near scale-independent manner. This applies for even smaller scales during
the matter-dominated era, as the speed of sound of baryonic matter is substantially
smaller than the speed of sound of a radiation dominated Universe. Assuming again
that @y, = 0.04, one finds that kj ~ 103 Mpc’1 at recombination, z ~ 1,100 (Lon-
gair, 1989). Consequently, during matter domination, any density fluctuations at
sub-galactic scales can grow. Hence, we can conclude that scale-invariant structure

growth is a valid assumption at extragalactic scales for most of cosmic history.
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Given this, as different types of energy dominate the energy density of the
Universe, the linear growth rate of structure will vary accordingly. In the early
Universe, during the radiation-dominated era, as discussed in Section 1.1.3.4, P =
p/3 and p o< a—*, such that a o t'/2. In this case, Equation (1.53) can be rewritten

as

De(t) + =De(1) =0, (1.55)

where D.(7) is the linear structure growth with time affecting cold dark matter (this
excludes baryonic matter as this equation does not take into consideration any elec-
tromagnetic interactions between the radiation and the baryonic matter). Therefore,
in the radiation-dominated era, there are two possible solutions for the structure
growth given by

D.(t) = Do+ D/, In(t /19), (1.56)

where D g, D’qu and #y are constants which depend on the initial conditions. From
this we can conclude that during the radiation-dominated era before recombination
any inhomogeneities in the density would either stay static or grow slowly with

time.

Once (dark) matter becomes dominant in the Universe, we know from Sec-
tions 1.1.3.1 and 1.1.3.2 that p o« g~ and therefore a o 123, Altering Equa-

tion (1.53) accordingly, and taking matter to be pressureless (cs = 0),, we find that

3. 2

Dm(t)"}'_Dm(t)_ﬁDm(t) =0, (1.57)

where Dp, (1) is the linear structure growth rate of all matter. The matter-dominated

era also allows two possible solutions for the structure growth which are given by

A £\ 2/3
Dm(t):Dm,o(5> +D{n70<£> : (1.58)

Assuming that density fluctuations appear at early times, the #~! mode in Dy, (¢) is

suppressed at late times, so the realised mode is the £2/3 term. Thus, for most of the
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cosmic history of the Universe, the perturbations to the mean matter density grow

as a power law with time.

In the late Universe, as the era of dark energy dominance begins, the back-
ground expansion of the Universe is largely determined by the cosmological con-
stant discussed in Section 1.1.3.3. In this scenario, w = —1, so p is independent
of the scale factor, a(t), so a o< e’ This then allows one to make the following

approximation of Equation (1.53),

lim |Dm(t) +2H()Dm(t)| — 0. (1.59)

Qpr—1

In this limit, the equation has the two following solutions

Din(t) = Do + Djy ge 2100 (1.60)

Consequently, dark energy suppresses the growth of linear structure as time pro-

gresses.

1.2.3.1 Linear Matter Power Spectrum

Neither the density contrast, 0, nor the structure growth rate, D, can be directly
observed by cosmological surveys. Instead we observe tracers of the underlying
large-scale structure (such as galaxies or the cosmic microwave background). To
model this, we are interested in understanding the statistics of the fluctuations in the
matter density through its three-dimensional matter power spectrum, Ps(|k|,z,t'),

defined as

(8, 1) B (K, 1)) = (27)388) (k+ K )P5 ([K] 2,1"), (1.61)

where 5]()3) is the three-dimensional Dirac delta function.

As the initial conditions atz = 0 are set by the primordial curvature fluctuations
which remain after inflation, as discussed in Section 1.1.4, the equal-time three-
dimensional matter power spectrum, Ps(|k|,), which gives the correlations between

matter field fluctuations at a given look-back time (r = t’), can be modelled as
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Ps(|kl,r) = T2 (k|)D*(r) P (|kl), (1.62)

where Py(|k|) is the three-dimensional power spectrum of primordial curvature
fluctuations as defined in Equation (1.40) and T'(|k|) is the transfer function which
depends on the solutions to the spatial part of Equation (1.51). To parametrise the
linear matter power spectrum, it is common to use the parameter og which is defined

by

ok = /dkPg(k,t — 0)W(k,R), (1.63)

where R is the characteristic scale of the kernel function, W (k,R), which is given

by

2

W (k,R) = W[

sin(kR) — kRcos(kR)], (1.64)

where R is usually set to 82~ !Mpc, so o3 can the interpreted as the amplitude of
the matter overdensity fluctuations at scales of 8 2~ 'Mpc. This scale is chosen as a

convention as og is roughly of order unity for realistic cosmological models.

As with the growth rate, D(¢), in Section 1.2.3, the transfer function depends
on the type of matter/energy which dominates the expansion of the Universe at a
given time. For a given cosmic epoch, T'(|k|) is given by the Einstein-Boltzmann
equations which take into consideration radiative coupling, the fluid equations given
in Equation (1.49) and the evolution of the metric (see e.g. Kodama & Sasaki 1984;
Sugiyama 1989).

These equations are typically solved numerically using tools such as CAMB
(Code for Anisotropies in the Microwave Background; Lewis et al. 2000) or
CLASS (Cosmic Linear Anisotropy Solving System; Lesgourgues 2011). For ex-
ample, Figure 1.3 shows the matter power spectrum as calculated with CAMB
assuming a ACDM cosmology consistent with Planck Collaboration et al. (2020)
at three different look-back times. In Figure 1.3, the power spectrum at large

scales (small k), is largely determined by the primordial power spectrum such that
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P(k) o< k"~1. This trend continues until the peak of all three power spectra which
gives the scale of the horizon of Universe when matter-radiation equality occurs,
keq, where Qu (feq) = Qr(feq). When k < keg, the scale of the fluctuations exceeds
the horizon at kg, 0 any such modes would only enter the horizon during the
matter-dominated epoch, while for k > keq, the perturbations enter the horizon dur-
ing the radiation-dominated epoch. At k > keq, one can also notice some wiggles in
the power spectrum. These occur at the characteristic scale of Baryonic Acoustic
Oscillations (BAOs). These BAOs occur because before recombination baryonic
matter and photons are coupled through Thomson scattering. After matter-radiation
equality, as the dark matter inhomogeneities begin to grow. Any inhomogeneities
in the baryonic matter can only grow until Thomson scattering smooths away any
inhomogeneities, in other words, the perturbations to baryonic density oscillate at
a scale set by speed of sound in the baryonic plasma. As soon as recombination
occurs and baryonic matter becomes electrically neutral; photons and baryons de-
couple and these oscillations are imprinted into the matter density perturbations.
Figure 1.3 also shows how the matter power spectrum evolves with look-back time
(or redshift): as the particle horizon grows with decreasing look-back time, the over-
all power of the power spectrum at all modes increases, because a larger comoving

volume is causally coupled with itself.

To couple the matter power spectrum to observable quantities in galaxy clus-
tering surveys, we assume that the number density of galaxies traces the underlying
matter density contrast, d, as a function of some linear bias, given by b(|k|) as

follows

Pyg(Ik|,1) = b*(|k|)Ps(|K|.1), (1.65)

where Py (|k|,¢) is the three-dimensional galaxy power spectrum which is defined

as

(8 (k, 1)y (k1)) = (27)3 85 (k+ k') Pog (K] 1), (1.66)
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Plot of the three-dimensional matter power spectrum, Ps(k,z), as a function
of both wavenumber, k, and redshift, z. The solid lines show the linear matter
power spectrum, while the dashed lines show the non-linear matter power spec-
trum including baryonic effects at small scales. The light blue line shows the
power spectra at z = 0, the orange lines at z = 1.0 and the red lines at z = 2.0.
All power spectra were calculated using CAMB (Code for Anisotropies in the
Microwave Background; Lewis et al. 2000) and assuming a flat ACDM cos-
mology consistent with Planck Collaboration et al. (2020) and a halofit model
(Smith et al., 2003; Takahashi et al., 2012; Bird et al., 2012) for the non-linear
matter power spectrum with Apary = 3.13, Mpary = 0.603 and log(Tagn) = 7.8.
Figure made by the author.

where &, (k,?) is the Fourier transform of &(E,7) = 8n(X,) /7(t) where the number

distribution of galaxies, n(z), is often assumed to be point-like as follows

n(t) =(t) + 6n(E) = 259@_:,.). (1.67)

This relationship is usually assumed to hold within the linear regime where

0 < 1, the structure due to galaxy sub-halos is not resolved, non-linearities due to

baryonic feedback are small and gravitational non-linearities are not dominant.

1.2.4 Non-Linear Structure Growth

Throughout Section 1.2.3, there have been repeated assumptions of linearity: only

considering linear perturbations to the fluid equation, neglecting any additional in-
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teractions due to baryonic physics (particularly at small scales) and assuming a lin-
ear galaxy bias. At large scales, these assumptions have been shown to be accurate,
but as we aim to model smaller scales, scales smaller than |k| ~ 10~! AMpc~!, there
can be substantial deviations from linearity in the observed matter power spectrum

(see Figure 1.3).

As 0 approaches unity at smaller scales, the non-linear terms in Equa-
tion (1.49) become relevant. In this, so-called “weak” non-linear regime, the al-
lowed solutions for §(k) have phases which are substantially shifted from their
initial values. As a consequence, the distribution of the density fluctuations be-
come increasingly non-Gaussian as they deviate from the Gaussian primordial field

(Davis et al., 1985; Sahni & Coles, 1995; Jenkins et al., 1998).

At even smaller scales, additional non-linearities may become relevant as the
matter distribution deviates even further from Gaussianity and the strength of bary-
onic interactions becomes comparable to the magnitude of gravitational potentials.

This is know as the regime of “strong” non-linearity.

At scales near |k| ~ 2hMpc’1, as shown in Figure 1.3, non-linearities in
the matter power spectrum start contributing a considerable fraction of the over-
all power, as gravitationally bound structures subject to baryonic physics start to
form at these scales. The dynamics of the contents of such objects are non-trivial
and highly non-linear as hydrodynamical effects, magnetodynamics, star formation
and the thermodynamics of intergalactic gas start influencing the growth of struc-
ture of baryons. Therefore, these effects will not only alter the overall matter power
spectrum, but also complicate the correlation between the distribution of galaxies

and the underlying dark matter distribution.

Regarding the matter power spectrum, the most accurate way to track any non-
linear effects is the use of large numerical simulations which include any baryonic
interactions at small scales. However, since these simulations are difficult and ex-
pensive to compute, it is common to opt for semi-analytical models which are cali-
brated with simulations. One popular such model is the halo model (Seljak, 2000;
Peacock & Smith, 2000; Ma & Fry, 2000) which assumes that all matter is bound
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within spherical halos and their clustering can be explained by considering the clus-
tering between halo pairs and the clustering within halos themselves. Nevertheless,
it has been found that a purely analytical halo model does not accurately recover the
non-linearities in the matter power spectrum when compared to simulations (Tin-
ker et al., 2005; Valageas & Nishimichi, 2011; Mead et al., 2015; van Daalen &
Schaye, 2015). For this reason, as is the case in this thesis, it is common to opt for
a fitting function approach based on the halo model which is calibrated by simula-
tions such as halofit (Smith et al., 2003; Takahashi et al., 2012; Bird et al., 2012)
or HMCODE (Halo Model code; Mead et al. 2015, 2016, 2021). These models ei-
ther create a functional form for the halo model or they alter the halo model as a
function of some parameters. The latter approach is the one used in HMCODE and
it has been found to yield better agreements with simulations (Mead et al., 2021).
The main free parameters typically varied in these models is the baryonic feedback
amplitude, Abary, which scales the halo-mass concentration with redshift, and the
halo bloating parameter, 1, which scales the size of the halo mass density profile

(Navarro et al., 1997).

The calibration of halo model fitting functions is typically based on hydrody-
namical simulations, such as COSMO-OWLS (Le Brun et al., 2014) or BAHAMAS
(McCarthy et al., 2017), which include accurate modelling for gravitational col-
lapse, star formation, thermodynamics, etc. Among these effects, one of the dom-
inant factors for the suppression of structure formation at small scales in baryonic
feedback due to Active Galactic Nuclei (AGN). AGN are thought to be supermas-
sive black holes at the centres of galaxies which are actively accreting interstellar
gas which subsequently becomes heated as it is accelerated by the black holes’ grav-
ity. This effect can heat the gas surrounding a supermassive black hole to such an
extend that the gas expands outside of the virial radius of the galaxy’s halo (Schaye
et al., 2010; van Daalen et al., 2011; Martizzi et al., 2014; van Daalen & Schaye,
2015). This effect can therefore significantly disturb the density profile of the bary-
onic matter in a halo which affects Ap,y and 1 (Duffy et al., 2010). Thus, AGN

feedback is often implicitly encoded in the semi-analytical fits in halofit or HM-
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CODE, while the most recent iteration of HMCODE (Mead et al., 2021) allows to
explicitly vary the amplitude of AGN feedback as a function of the average temper-
ature of AGN (TxgN)-

If we are interested in modelling the three-dimensional galaxy power spectrum
from the matter power spectrum, as defined in Equation (1.66), baryonic physics
add an additional layer of complication as Equation (1.65) may not hold for large
values of |k| as the galaxy bias, b, deviates from linearity too. Within the context of
the halo model, firstly the clustering of halos may not necessarily follow the same
power spectrum as dark matter which may be quantified by a halo bias (Cole &
Kaiser, 1989). Additionally, it is typical to assume a linear galaxy bias with b =1
is equivalent to assuming that each dark matter halo has one galaxy at its centre.
Although to first-order, this is roughly the case, we know that this cannot be the full
picture, since systems of multiple galaxies are known to exist frequently, while it
is also known that most galaxies have multiple dwarf galaxies surrounding them.
There are many models which address this scale dependence in the halo and galaxy
bias through parametric alterations of the relation shown in Equation (1.65) (Cole
& Kaiser, 1989; Mo & White, 1996; Jing, 1998; Sheth et al., 2001; Seljak, 2000;
Pillepich et al., 2010; Tinker et al., 2010; Bhattacharya et al., 2011).
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1.3 Galaxy Surveys as Probes of Large-Scale Struc-

ture

In Section 1.2, I have outlined how perturbations in the energy/matter density of the
Universe evolve and grow under ACDM, how we may quantify them and how they
may be traced by galaxies. These concrete predictions of ACDM for the statistical
distribution of dark matter and galaxies allows us to test the model through galaxy
surveys which constrain these statistics in the late Universe. There are three main
probes of this which can be constructed from observables: galaxy clustering, weak
gravitational lensing and galaxy-galaxy-lensing.

In Section 1.3.1, I discuss galaxy clustering which refers to the study of the
spatial distribution of galaxies in the sky and along the line of sight. Section 1.3.2
presents weak-gravitational lensing and how this observable measures cosmic shear,
which is a direct probe of the underlying matter power spectrum. Section 1.3.3
shows how both of these ideas can be combined to measure how galaxies in the
foreground gravitationally lens galaxies in the background. Lastly, Section 1.3.4
discusses the current state-of-the-art in the field of cosmological galaxy surveys as

well as future prospects.

1.3.1 Galaxy Clustering

Galaxy clustering is the phenomenon of galaxies spatially coalescing at certain
scales in accordance with the underlying distribution of matter and the dynamics
of galaxy evolution. This can be measured by galaxy surveys through the map-
ping of galaxy positions on the sky, x, and along the line of sight by measuring
the galaxies’ redshift, z. Once this is measured, one can define summary statistics
which compress the information in the galaxy positions. The most commonly used

one is a two-point correlation function, égg, which is defined from theory as

Eoe(Ax = |x; — x|, 2) = (8g(xi,2) Og(x},2)), (1.68)

where i and j are indices representing different galaxy positions, Ax = |x; — x| since

we assume isotropy in ACDM which implies that the structure in the Universe only
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depends on the scalar distance, and 6g are the deviations from the mean in the
number counts of galaxies as shown in Equation (1.66). Equation (1.66) can be
rewritten in spatial coordinates as follows
£, (Ax,2) — Pk —ilk|Ax

ge(A%2) = / (2 Tee KL, 2) e (1.69)
To estimate Ego(Ax,z) from observations, we must first discretise the domain: Ax
is binned into separation bins with the index t, while z is binned into redshift bins
(also known as lens bins or tomographic bins) indexed by i and j. Then, for a given
redshift bin pair, we can estimate &y (Ax,z) by comparing the spatial distribution
of the observed galaxies to the spatial distribution of randomly sampled points. To
do so, a commonly used estimator is the Landy-Szalay estimator (Landy & Szalay,

1993) for the observed two-point correlation function, éééj ), given by

£ (i)) (Ax,) =1+ (Nrand)zDD(ij) (Ax;)  MNand (DRi(Axl) +DRj(AXl)

e N a RR(Ax;) = RR(Ax,)

RR(Ax,) N ) (1.70)

where N is the number of galaxies in i and j, Nyyq 1S the number of random points
sampled usually from a Poisson distribution or form a uniform distribution for a
perfect survey, DD (Ax;) is the number of galaxy pairs between sample i and
sample j which are at a spatial separation such that they fall within the 1™ bin,
DRUJ) (Ax,) is the number of pairs between galaxy sample i and the random sample
of points which are at a spatial separation such that they fall within the 1™ bin,
and RR(Ax,) is the number of point pairs from the random sample which are at a
distance n such that they fall within the 1™ bin. In practice, as we are free to sample
an arbitrary number of random points, it is common to set N,ng > N for better

numerical accuracy.

It is important to note that ég(g ) (Ax,) may be biased due to selection effects in
the galaxy survey in question. Along the line of sight, the flux limit of the survey
implies that further away galaxies are less likely to be observed as they tend to be

fainter. At the same time, if the survey is photometric, the redshift estimates may



1.3. Galaxy Surveys as Probes of Large-Scale Structure 80

be biased, so the galaxies might end up in the incorrect bin. This can in turn bias
the Ag(g ) (Ax;) measurements if this bias is not reflected in the redshift distribution
of the lens galaxy sample in question. In the angular direction of the sky, the galaxy
counts could be biased due to a variety of reasons which are non-isotropic: galactic
absorption, variations in the seeing from observation to observation (changing the
apparent magnitude limit as function of the direction) or masking of certain areas
due to foreground light sources such as stars. At the same time, due to the magnitude
limit (which itself may not be isotropic), an additional source of non-isotropic bias
is added called the magnification bias. As is discussed in detail in Section 1.3.2,
gravitational lensing due to matter in the foreground of a galactic light source may
focuses light such that the observed flux from the light source is boosted to the point
where it surpasses the flux limit of the galaxy survey. Therefore, a galaxy which
should not have been observed according to the selection function of the survey will
be observed, which may lead to the overcounting of galaxies. The reverse can occur
when the foreground matter changes the solid angle from the source such that flux
decreases. As this effect is correlated with the foreground dark matter distribution,

it may add additional structure to the observed galaxy count fields.

Additionally, as we consider the spatial distribution of galaxies, a random
realisation of many possible ones given the underlying galaxy power spectrum,
;%j ) (Ax,) is subject to shot noise. This is often modelled as white Poisson noise

such that

1

Tgal (z)’

Pyg (k|,2) = Pag([kl,2) + (1.71)

where Py, (|k|,z) is the inferred galaxy power spectrum and 7ig(z) is the aver-
age three-dimensional galaxy number density at redshift, z. Simultaneously, the
shot noise is increasing the statistical uncertainty of the power spectrum (see e.g.
Wadekar & Scoccimarro 2020 for detailed modelling of the shot noise in the galaxy

clustering covariance).
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1.3.2 Weak Gravitational Lensing and Cosmic Shear

Gravitational lensing is a phenomenon predicted by General Relativity which in-
volves light from distant sources being deflected from its geodesic in Minkowski
space due to matter in the foreground curving space-time and light travelling along
the geodesic in this curved space-time. This phenomenon is typically split into
three regimes: strong gravitational lensing (the mass of the gravitational lens is
large enough for multiple images of the source to appear), weak gravitational lenses
(the mass of the lens slightly distorts the shape and the size of a single image) and
microlensing (the mass of the lens is small, so it does not measurably distort the
shape and size of the source, but alters its brightness, while potentially varying over
observable time scales). In this thesis, I am exclusively interested in the weak gravi-
tational lensing regime on cosmological scales. To introduce how this phenomenon
can be modelled and observed, this section follows the reviews given in Bartelmann
& Schneider (2001), Schneider (2003), Van Waerbeke & Mellier (2003), Schneider
(2006), Heavens (2009) and Kilbinger (2015).

On cosmological scales, all light emitted by distant sources, such as galaxies,
experiences weak gravitational lensing due to the matter density perturbations in
the foreground. Therefore, the weak gravitational lensing signal ought to be cou-
pled directly to the matter power spectrum. This signal, when considering only the
shape distortions of galaxies and removing any contaminating signals, is known as
cosmic shear. To model this, we alter the FLRW metric given in Equation (1.9) by
considering a nearly flat metric (k = 0) with a gravitational potential field, ®, given

by

ds? = (1+®)d* — (1 - ®)a?(r)dE?, (1.72)

where X is given in hyperspherical coordinates as defined in Equation (1.10) and
the gravitational potential field, @, is related to the overdensity field, &, through the

Poisson equation as follows

3HOm

Vi =
2a(t)

0. (1.73)
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In general, any particle in motion on the worldline, x%, within space-time follows a

geodesic described by the geodesic equation as follows

dZx> doM dxY
+T% —— =0
dA2 HVdA dA ’

(1.74)

where A is the affine parameter and F‘i‘w is the Christoffel symbol as given by
Equation (1.6). Considering a photon travelling within a manifold given by Equa-
tion (1.72), it must be moving on a light-like geodesic such that ds*> = 0 and there-
fore a comoving distance interval is given by dy = +a~'(¢)dt = dn (where the
positive root of the proper time interval, dn, represents an outgoing photon and the
negative root an incoming one). Assuming that the photon is incoming into the grav-
itational potential, it can be shown that the geodesic for the time-like coordinate, 1,

to zeroth order in & reduces to the following (Heavens, 2009),

3—2 = a—12. (1.75)
We can also change the coordinate frame such that the gravitational potential, ®, is
defined as a function of the transverse comoving coordinate along the line of sight,
fx(x), and two transverse coordinates which are perpendicular to the line of sight,

x1 and x,. Combining Equation (1.75) with the geodesic equation in the zeroth order

of & for x; and x,, one can find that

d?x;  —29P(x1,x2, fi (%))

= 1.7
dn? ox; ) (1.76)
where x; € {1,2}. Integrating this with respect to dn = —dy twice,
x 0D (x, x5, !
w= 062 [ 1RG0 il PP )

i
where 6; is an integration constant which through a dimensionality argument must

represent a small angle deviation in the transverse direction, such that x; = fi.(x)6;

in the absence of a gravitational potential. It is important to note here that taking the
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integral along the radial direction where fi(x) || fi(x) is an approximation, as in
reality the path length travelled by the photon is altered by small deviations caused
by fluctuations in the metric. Having said this, we may safely assume this so-called
Born approximation, as it is remarkably accurate in the weak lensing regime (Petri
etal., 2017). Taylor expandlng Fr 7 to linear order in both x; and x, and transforming

the coordinates to 6; = x;/ fi(x ), one finds that

2®(6! =0,0,
xi:fk(%)ei—z/oxd%/[fk(x)_fk(%/)]( (6 ae!} 1)

2 I !/ I

8@8%
Thus, the deviation in x; between two nearby photons that have been lensed by ® is

given by

Axi(E) = fi(2)A0;(8ij — ¢1;(E)), (1.79)

where §;; is the Kronecker delta and ¢;; is defined as

fillx')] 0°®@(E)
(X 2/ x fk() e (1.80)

In the case where the observations are of many sources in population t which are

distributed along the line of sight according to p(l)(x), we can sum over Equa-

tion (1.80) for all sources in the distribution, giving that

/g azq)( )
0;j (X /d kx 76,96 (1.81)

where g(!)(y) is given by

(X)) = filx)
/pr AT (1.82)

Equation (1.79) is a linear mapping from the source to the image as it reaches
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the observer. This can be expressed with the amplification matrix, .o/, which is

defined as follows

JZ{UESU—(]),‘]'. (183)

As 6; and 6; are interchangeable, .<7;; must be symmetric and it has only 3 degrees
of freedom. With that, it is convenient to expand the amplification matrix into an

isotropic expansion term and a shear term as follows

l-x 0 N %
oy = + , (1.84)
0 1-x -n N
where K is the convergence and Y = 71 +17 is the complex shear. These terms relate

back to Equation (1.83) as follows

(011 + 022),
(@11 — 022) +1¢12.

| =

K=
(1.85)

| =

Y=

Upon inspection of Equation (1.84), it becomes apparent that the convergence,
Kk, isotropically magnifies the size of the observed image for k¥ > 0, while y
stretches the image along the 6; axis and 7, stretches the image of the source along
the 6, = 40, diagonal axis. The amplification matrix is also often expressed in

terms of the reduced shear, g, as follows

1 — _
di=(1-x)| ' T8, (1.86)

-8 1+g
where g = 7/(1 — k) = g1 +igz. To map the image of the source from the ob-
served image, we must invert the amplification matrix. This is possible in the
weak lensing limit, where |k| < 1 and |y| < 1, and as with any invertable ma-
trix, ,szflj_l o< 1 /det(.e7) holds. Therefore, the size of the image is scaled with respect

to the source by the magnification, u, given by
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1 1
W= G S T S (1.87)

Here, pu only affects the overall size of the source, as gravitational lensing con-
serves surface brightness, the flux of the source may be magnified. Hence, in flux-
limited galaxy surveys, there may be a non-isotropic bias in the galaxy counts which
is known as the magnification bias. Although this is not a problem for current
and upcoming cosmic shear measurements (Deshpande et al., 2020; Duncan et al.,
2022), the magnification bias can be considerable in the galaxy clustering (see Sec-
tion 1.3.1) and in the galaxy-galaxy lensing signals (see Section 1.3.3). When mea-
suring galaxy shapes, the measurement is only sensitive to changes in the shape, so
one can only determine the reduced shear from observations. To illustrate how such
observations allow to probe the underlying large-scale structure, Figure 1.4 exem-
plifies the shear induced by the convergence field given by the large-scale structure
along a given line of sight. The left panel shows convergence along the line of
sight over a two-dimensional plane. On the right of Figure 1.4, we can see that
the associated shear vector field is correlated with the convergence field such that
regions with larger convergence induce a coherent shear tangential to the overdense
region. Therefore, the observed shear can be used to reconstruct the properties of

the underlying convergence.

To make the relation between the convergence, K, of galaxy population i with
the underlying matter overdensity, 0, we can combine Equation (1.85) with the

Poisson equation given by Equation (1.73), such that

) 2 1 (D) (2!
K(z)(z) _ 3I—IO-Q'm /Oxd /fk(x )g (%) 6(2) (1.88)

2 fex)  alx’)
The integral on the right-hand side of the equation means that k(@) (X) at a given
look-back time, z or %, is two-dimensional. Therefore, the statistics of the conver-
gence field, k, can be captured by a two-dimensional angular power spectrum, Ci,

which is defined through



1.3. Galaxy Surveys as Probes of Large-Scale Structure 86

Convergence, k(X) Shear, y(X)

Figure 1.4: Spatial maps showing convergence (left panel) and the associated shear field
(right panel) over a two-dimensional plane. On the left, the lighter orange
regions represent areas with large convergence, while the dark regions represent
areas with small values of convergence, i.e. less matter along the line of sight.
On the right, the lines of the vector field represent the average direction and
magnitude of the observed shear which correlates to the convergence shown on
the left panel. Figure based on White & Hu (2000).

&6, )R (€, 2)) = 2m?85) (e~ )i (e)), (1.89)

where £ is the two-dimensional wavevector, 6]()2) is the two-dimensional Dirac delta

function and &Y (£) is the two-dimensional Fourier transform of k!)(Z) defined by

7O (0, 7) = / &2 k)(x) e itE

S , , (1.90)
= [ o) [ R0 e,

where W, (x) = %f (x)g" Y ' _di ;
p = 5" fi(x) & (x)/a(x) and 6\ (X, x) is the three-dimensional

overdensity field as defined in Equation (1.45). Substituting Equation (1.90) into
Equation (1.89), while replacing () with its Fourier transform, &) using Equa-

tion (1.52), and using Equation (1.61), one finds that
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)= [ awd ) | aewd o)
Jelkx) — je(kx')
k)R ke

where j, is the /! spherical Bessel function and Ps(k,x,x’) is the unequal-time

(1.91)

[ akips 1)

three-dimensional power spectrum (i.e. the power spectrum between matter fields
at different look-back times/comoving distances from the observer) which is com-
monly approximated taking the geometric mean of the matter power spectrum at

each time as (Castro et al., 2005; Kitching & Heavens, 2017),

Ps(k,x,%') = \/Ps(k, x) Ps(k,. x"). (1.92)

In addition, there is the so-called Limber approximation (Limber, 1953; Kaiser,
1992) which consists in a Taylor expansion around the approximate maximum of
the Bessel function at kf(x) = ¢+ 1/2, and only considering the first-order term.

In this case, Equation (1.91) reduces to

WDy~ [ AKX ) () (f+1/2 >
Ciid () =~ Wy Wy Ps| ———, . 1.93

As can be seen from Equation (1.93), the Limber approximation reduces the
number of integrals needed from three in Equation (1.91) to one, while making the
Bessel function in Equation (1.91) vanish which are highly oscillatory and numeri-
cally expensive to integrate. At the same time, Limber approximation has proven to
be accurate for cosmic shear particularly for large ¢. Still, the bias in the signal due
to the Limber approximation for ¢ < 40 is < 1% (Kitching et al., 2017; Lemos et al.,
)

2017). To get the cosmic shear angular power spectrum, Cgé (£), on the curved sky,

we simply take (Lemos et al., 2017),

£+2)! 1 i)

@) g\ —
Cac () = (C=2)12(L+1)27FF

(), (1.94)

where ! indicates the factorial.

When constraining cosmological parameters using weak gravitational lensing,
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the signal from two-point statistics given by Equation (1.94) is degenerate for cer-
tain combinations of oy (as defined in Equation (1.63)) and Q,. To account for this
when reporting cosmological results from weak gravitational lensing, it is common

to use the following reparametrisation given by

Q
Sg = oy ﬁ (1.95)

When conducting a (photometric) weak gravitational lensing survey, the
shapes, photometric redshifts and positions of galaxies are measured. The shapes
of the galaxies can be measured using parametric fitting or free-form algorithms.
Either methodology requires corrections for instrumental biases in the shapes due
to the point-spread function of the telescope, charge-transfer inefficiencies in the
charged-coupled device (CCD), etc. (see Heymans et al. 2006; Massey et al. 2007,
Miller et al. 2007; Kitching et al. 2010 for details on shape calibration). After ob-
taining shape measurements from images and applying the necessary corrections,
the resulting galaxy ellipticity, €, is an estimator of the galaxy’s reduced shear ap-
plied to the intrinsic galaxy ellipticities, i.e. € = & +1i& = ¥+ &p. In addition,
the photometric redshifts are estimated from multiband photometry. This can be
achieved with a plethora of algorithms, but they are always based on calibrating the
algorithm with a spectroscopic reference sample (see e.g. Lima et al. 2008; Wright
et al. 2020a). Depending on the photometric redshift estimate, the source galaxies
are binned in a given tomographic redshift bin i. With these measurements made,
the data is commonly compressed into a two-point correlation function over galaxy

pairs, o and f3, as a summary statistic defined as

_ Zacipewanpler’ (0a)er” () £ 6" (0a)e;” (8p)

£(ij)
0
es,i( ) Zaei,ﬁejwﬂwﬁ

, (1.96)

where wy, is the galaxy weight for a galaxy o, which accounts for selection effects
and systematic biases, and 58(2] )i(O) is the estimated spatial two-point correlation

function as a function of the angular separation, 6 between a given galaxy pair
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from tomographic bins i and j. Note that Equation (1.96) does not consider any
systematic effects which may shift or scale the measured ellipticities. Eéfg )+ gives
the correlation between the shapes as a function of separation, while éé;j )_ yields the
anti-correlation between the shapes. Since the measured € also includes the intrinsic
galaxy ellipticities, this induces auto-correlations in the galaxy shapes when i = j
known as the shape noise. To account for this, one can subtract the shape noise from

the autocorrelations as follows (Schneider et al., 2002),

(el (0u)e” (8p) +£ (82))(8p)) =€) (8) + 8,01, (197)
where §;; is the Kronecker delta and Gg(i) is the shape noise due to the galaxies’
intrinsic ellipticities as given by

02 i)2
2 Teardfe® ]

O¢
Yaci W(Zx

(1.98)

é%,’ )i(e) can be related to the curl-free weak lensing angular power spectrum,

Aij)

yg,j by performing an inverse Hankel transform as follows

D) () = 27:/: d00E,(6)Jo(16) = 2n/om d00E (6)(¢6),  (1.99)

where Jo(¢0) and J4(¢6) are the zeroth and fourth order Bessel functions, respec-
tively.
To relate the weak lensing angular power spectrum, C‘%f) (¢), to the cosmic

shear angular power spectrum, Cgé) (£), one must take into consideration that cos-
mic shear is not the only physical effect which may coherently shear galaxy shapes
as a function of scale. There is also the phenomenon of intrinsic alignments (IAs).
IAs can be thought of as occurring in galaxies which formed under the influence of
the same tidal fields such that their orientation and shape may be intrinsically cor-

related at certain scales (see e.g. Troxel & Ishak 2015 for a review). This effect can
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be degenerate with cosmic shear and contributes to the weak gravitational len