Forward-modelling galaxy surveys:

A forward model for non-local stochastic galaxy bias

Maximilian von Wietersheim-Kramsta

mwiet.github.io

A multi-scale and multi-tracer view of the cosmic web, NAM 2025

8th July 2025

In collaboration with Nicolas Tessore, Qianjun Hang, Niall Jeffrey, Benjamin Joachimi

Galaxy-Halo Connection/Galaxy Bias

Wechsler & Tinker 2018

Galaxy Bias: Theory

Matter density contrast:

$$\delta(x,\tau) = \frac{\rho(x,\tau) - \bar{\rho}(\tau)}{\bar{\rho}(\tau)}$$

Galaxy count contrast:

$$\delta^{g}(x,\tau) = \frac{N(x,\tau) - \bar{N}(\tau)}{\bar{N}(\tau)}$$

Linear bias:

$$\delta^{g}(x) = b(x) \, \delta^{DM}(x)$$

Stochasticity of Galaxy Bias

Desjacques, Jeong & Schmidt 2019

Non-Locality in Galaxy Bias

See also Chan, Scoccimarro & Sheth 2012

Bartlett, Ho & Wandelt 2024

Perturbative Modelling

Expand into bias terms:

$$\delta^g(x,\tau) = \sum_O b_O(\tau)O(x,\tau)$$

Operators of the matter field and gravitational potential: $\delta(x,\tau)$ $\Phi(x,\tau)$

Stochasticity:
$$\delta^g(x,\tau) = \ldots + \epsilon(x,\tau) + \sum_O \epsilon_O(x,\tau) O(x,\tau)$$

Assumptions:

- Large, quasi-linear scales
- Gaussian and adiabatic initial conditions
- Statistical homogeneity and isotropy
- Locality of galaxy formation etc.

Schaye et al. 2023 Linke et al. 2022

FLAMINGO Simulations

- -1 Gpc & 2.8 Gpc boxes
- -4 cosmologies
- -8 feedback models
- -2 lightcones per realisation
- -Dark matter only run for each simulation

Schaye et al. 2023

FLAMINGO Lightcones

Contains information on:

- Redshift
- Stellar mass
- Star formation rate
- Black hole mass
- Resolution

In projection along the line-of-sight:

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \, W(z) \, \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \, W(z) \, \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \, W(z) \, \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \, W(z) \, \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \, W(z) \, \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \, W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(x)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(z)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(z)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(z)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(z)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(z)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(z)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(z)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z); \ \delta(\theta,z) = \delta(z)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int \mathrm{d}z \,_0 W(z) \,_0 \delta(\theta,z)$$

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_$$

von Wietersheim-Kramsta, et al. in prep.

von Wietersheim-Kramsta, et al. in prep.

Accuracy at the 2pt Level

Accuracy at the 2pt Level

Overall Accuracy

von Wietersheim-Kramsta, et al. in prep.

Wavelets, $\{\psi_{i,\theta}\}_{i,\theta}$, for a given dilation and rotation (dilation j and rotation θ).

WPH moments of field X:

$$C_{\lambda,p,\lambda',p'}(\tau) = \text{Cov}\left([X * \psi_{\lambda}(\mathbf{r})]^p, [X * \psi_{\lambda'}(\mathbf{r} + \tau)]^{p'}\right)$$

Coefficients:

$$S^{(1,1)}: \lambda = \lambda', p = p' = 1, \tau = \tau_{n,\alpha}$$

Weighted averages of the power spectrum over the bandpass of $\psi_{\boldsymbol{\lambda}}$

$$S^{(0,1)}: \lambda = \lambda', p = 0, p' = 1, \tau = 0;$$

Couplings between the scales included in the same bandpass

$$C^{(0,1)}: p=0, p'=1,\ldots$$

Correlation between local levels of oscillation for the scales in the bandpasses associated with $\psi_{\scriptscriptstyle \lambda}$ and $\psi_{\scriptscriptstyle \lambda}$.

Regaldo-Saint Blancard et al. 2021

von Wietersheim-Kramsta, et al. in prep.

Weighted averages of the power spectrum over the bandpass of ψ_1

Couplings between the scales included in the same bandpass

von Wietersheim-Kramsta, et al. in prep.

Correlation between local levels of oscillation for the scales in the bandpasses associated with ψ_{λ} and ψ_{λ} .

von Wietersheim-Kramsta, et al. in prep.

Accuracy for Higher-Order Statistics: z = 1.5

Accuracy for Higher-Order Statistics: z = 1.0

Accuracy for Higher-Order Statistics: z = 0.5

Accuracy for Higher-Order Statistics: Resolution

Outlooks

Further testing:

- On independent FLAMINGO lightcones
- On equivalent Dark Matter Only simulations

Applications to forward modelling & SBI:

2. Sample galaxies from GLASS lognormal simulations

