

Cosmology

Non-local stochastic galaxy bias

Mapping the galaxy density field to the dark matter density map by constructing a semi-analytic model of galaxy bias, b(x):

1. Work in **spherical projection** space:

$$\delta(\theta) = \sum_{\ell m} \delta_{\ell m} \,_0 Y_{\ell m}(\theta) = \int_{\mathsf{Tessore, et al. (2023)}} \mathrm{d}z \, W(z) \, \delta(\theta, z)$$

- $\delta^{g}(x) = b(x) \, \delta^{DM}(x)$
 - 2. Decompose into deterministic& stochastic contributions.
 - 3. Calibrate parameters on only 2pt statistics from hydro simulations (FLAMINGO; Schaye et al. 2023).
 - **4.** Produce a **galaxy bias field** per projected shell.

Galaxy bias as a function of angular scale measured in FLAMINGO between z = 0.5 & z = 0.55.

The model is calibrated on two-point statistics alone but still captures more of the higher-order moments of the galaxy density field.

- The model naturally incorporates homogeneity, isotropy, nonlocality and stochasticity of the galaxy field with a minimal amount of degree-of-freedom.
- The parameterisation can be conditional on cosmology, AGN feedback parameters or local quantities (stellar mass, SFR, etc.).
- Enables **fast forward modelling** of galaxies from dark matter-only simulations (e.g. N-body or lognormal random fields).

Real part of the $C^{(0, 1)}$ term in the wavelet phase harmonic expansion of the fields (Regaldo-Saint Blancard, et al. 2021). It measures the correlation between local levels of oscillation at the scales associated with the bandpasses of two wavelets, $\psi_{j,\theta}$ & $\psi_{j',\theta'}$. Each wavelet is associated with a dilation, j, and a rotation angle, θ .

MAXIMILIAN VON WIETERSHEIM-KRAMSTA,

mwiet.github.io - maximilian.von-wietersheim-kramsta@durham.ac.uk
In collaboration with Nicolas Tessore, Qianjun Hang,
Niall Jeffrey, Benjamin Joachimi

