From Cosmic Shear to Subhalo Detection: Leveraging Simulation-Based Inference for Precision Cosmology

Maximilian von Wietersheim-Kramsta

K Research

Innovation

MPA Garching

mwiet.github.io

23rd May 2025

Institute for Computational Cosmology

Recipe for Cosmological Inference

Modelling Likelihoods

Bayes' Theorem

Neural Density Estimation

Alsing et al. (2019), MNRAS, 488(3), 4440-4458.

Masked Autoregressive Flows

Masked Autoregressive Flows

Lin, von Wietersheim-Kramsta, et al. (2022), MNRAS 524(4), pp. 6167-6180

Cosmic Shear & Large-Scale Structure

In collaboration with K. Lin, N. Tessore, B. Joachimi, A. Loureiro, R. Reischke, A.H. Wright

von Wietersheim-Kramsta, Lin et al. (2024), A&A 694, A223.

Kilo-Degree Survey

ESO VLT Survey Telescope

Harnessing the Photometric Uncertainties

Simulating Large-Scale Structure

GLASS: Generator for Large Scale Structure

Tessore, et al. (2023), OJA 6 (March).

Realistic Selection and Systematics

von Wietersheim-Kramsta, Lin et al. (2024), A&A 694, A223.

Depth and Galaxy Redshift

Sampling Galaxies

Galaxy Shapes

Shear Biases

PSF Residuals

$$\epsilon_{\text{obs}}(p, \vec{m}; \Theta) = (1 + M^{(p)}) \epsilon_{\text{lensed}}(\Theta) + \alpha^{(p)} \epsilon_{\text{PSF}}(m) + \beta^{(p)} \delta \epsilon_{\text{PSF}} + c^{(p)}$$
Tomographic bin
PSF shear bias

Summary: Angular Power Spectra/Pseudo-Cls

18

SBI: Sequential NDE

SBI: Neural Likelihood Estimation

5 cosmological + 7 nuisance + 25 pre-marginalised parameters

Parameter	Symbol	Prior type	Prior range	Fiducial
Density fluctuation amp.	<i>S</i> ₈	Flat	[0.1, 1.3]	0.76
Hubble constant	h_0	Flat	[0.64, 0.82]	0.767
Cold dark matter density	$\omega_{ m c}$	Flat	[0.051, 0.255]	0.118
Baryonic matter density	$\omega_{ m b}$	Flat	[0.019, 0.026]	0.026
Scalar spectral index	$n_{\rm s}$	Flat	[0.84, 1.1]	0.901
Intrinsic alignment amp.	A_{IA}	Flat	[-6, 6]	0.264
Baryon feedback amp.	$A_{\rm bary}$	Flat	[2, 3.13]	3.1
Redshift displacement	$\boldsymbol{\delta}_{z}$	Gaussian	$\mathcal{N}(0, \mathbf{C}_z)$	0
Multiplicative shear bias	$M^{(p)}$	Gaussian	$\mathcal{N}(\overline{M}^{(p)}, \sigma_M^{(p)})$	$\overline{M}^{(p)}$
Additive shear bias	$c_{1,2}^{(p)}$	Gaussian	$\mathcal{N}(\overline{c}_{1,2}^{(p)},\sigma_{c_{1,2}}^{(\widetilde{p})})$	$\overline{c}_{1,2}^{(p)}$
PSF variation shear bias	$\alpha_{1,2}^{(p)}$	Gaussian	$\mathcal{N}(\overline{lpha}_{1,2}^{(p)},\sigma_{lpha_{1,2}}^{(p)})$	$\overline{\alpha}_{1,2}^{(p)}$

SBI: Accuracy Testing

Extensions to KiDS-SBI

KiDS-SBI with KiDS-Legacy

G 10-1

10-1

J 10-

J 10

10⁻⁸ ,G ¹⁰⁻¹⁰ 10⁻¹² 10⁻⁸

- + extra 350 deg²
- + 1 extra i-band pass
- + 1 tomographic bin
- + new images sims for calib.
- + new redshift calibration
- + new baryon feedback model
- + new mass-dependent IAs model
- + new var. depth tracer
- + new compression

 10^2 10^3 10^1 10^2 10^3 10^1 10^2 10^3 10^1 10^2 10^3

3x2pt analysis (shear x clustering)

Forward simulating galaxy bias

True map

Mock map

von Wietersheim-Kramsta, et al. (in prep.)

Takeaways from Cosmic Shear

SBI allows for uncertainty propagation of **arbitrary complexity**

Including a **realistic systematics and selections** is important (it can shift S_8 1 σ lower!)

Modelling the noise correctly is just as important as the signal (if not more!)

von Wietersheim-Kramsta, Lin et al. (2024), A&A 694, A223.

Galaxy-Scale Strong Lenses for Subhalo Detection

In collaboration with R. Massey, Q. He, J. Nightingale, A. Robertson, A. Amvrosiadis, L. Fung, S. Lange, C. Frenk, S. Cole, R. Li, et al.

Recipe for Inference

Substructure & the Nature of Dark Matter

Bullock & Boylan-Kolchin (2017), ARA&A, 55:343-387.

Forward Modelling: Substructure

Forward Modelling: Galaxy-Scale Lens

Source:

- Elliptical Core-Sersic
- z = 1 •

Perturbers:

 $M_{\rm hf} = 10^7$

Lens:

- Power law mass
- z = 0.5
- No external shear •

He et al. (2022), MNRAS, 511(2), 3046-3062.

Observational Effects

(HST-like)

- Exposure = 8000s
- Sky background = 0.1
- Pixel scale = 0.05"
- = 0.05" σ_{PSF}
- + Poisson noise

Forward Modelling: Compression

AutoLens: Mock Observation

Compression/summary statistic: P(k)

Nightingale et al., (2021), JOSS, 6(58), 2825

RINSE & REPEAT 1000 TIMES!

Forward Modelling: Compression

SBI: Neural Posterior Estimation

SBI: Neural Posterior Estimation

SBI: Robustness

SBI: Coverage

SBI: Other Compressions

Conclusions & Outlooks

SBI can incorporate complexities into lens model inference

 $t \rightarrow \emph{O}$ We accurately and robustly recover subhalo counts \rightarrow M_{hf}

• Scale up to higher-dimensional parameter space

Add realism and additional dark matter models (SIDM)

Plans:

Appendix

Forward Simulations

